HEWLETT
(ﬁﬂ PACKARD

Hewlett-Packard
Computer Systems

COMMUNIGATOR

Volume V lssue 4

1981

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

HEWLETT-PACKARD
COMPUTER SYSTEMS

jsoue s COMMUNICATOR/1000

&

Feature Articles

OPERATING SYSTEMS 42 PROGRAM TO PROGRAM DATA PASSING USING
FIFO QUEUES IN SSGA
Matt/Betts/Fischer Body

INSTRUMENTATION 53 THE FUNDAMENTALS OF HP-IB ADDRESSING
Neal Kuhn/HP DSD

Departments
EDITOR'S DESK 3 ABOUT THIS ISSUE
4 BECOME A PUBLISHED AUTHOR IN THE
COMMUNICATOR/1000...

6 LETTERS TO THE EDITOR

BIT BUCKET 9 FILE MANAGEMENT USING SYMBOLS AND
RESERVED WORDS
13 SCHEDULING BASIC ON MULTIPLE TERMINALS
15 ONE MORE TIME
23 AN EDITOR FOR TYPE 1 FILES
30 AUTOMATIC SCALING AND LOGARITHMIC
PLOTTING FOR GRAPHICS/1000-II

BULLETINS 59 THE MOST POWERFUL RTE EVER
61 NEW LANGUAGES EXTEND PROGRAMMING
CAPABILITIES ON RTE-6/VM
63 JOIN AN HP 1000 USERS GROUP

1/2

EDITOR’S DESK

ABOUT THIS ISSUE

This issue of the Communicator/1000 includes one feature article contributed by an HP Customer, and one article reprinted
from a previous Communicator. Our supply of feature articles is dwindling, so now is a great time to submit a feature article for
publication consideration. Who knows you may be the next winner of an HP 32E caiculator. See the section entitled “Becoming
a Published Author in the Communicator/1000”, for the mechanics of submitting an article.

In the Operating Systems category we have an article by Matt Betts at Fischer Body in Warren, Michigan. Matt describes a
scheme using SSGA to coordinate the passing of data between two asynchronous programs, and is entitled “Program to
Program Data Passing Using FIFO Queues in SSGA".

The instrumentation category features a reprint from a previous Communicator/1000. The article appeared in Vol. Ill Issue 4 and
was a calculator award winner. So if you missed “The Fundamentals of HP-IB Addressing” by Neil Kuhn, now is your chance to
read it.

With the introduction of the new RTE-6 Operating System, the Communicator editors are looking forward to publishing many

interesting articles. However, we need your support. Take the opportunity to get familiar with RTE-6 by writing a Feature Article
for the Communicator/1000. We look forward to hearing from you.

Unfortunately we didn’t have any field or factory competitors for the 32E calculator. However, in the customer category, the
decision was diffuclt. The judges selected:

“Program to Program Data Passing Using FIFO Queues in SSGA”
By Mait Betts, Fisher Body Division, GM in Warren, Michigan

EDITOR’S DESK

BECOME A PUBLISHED AUTHOR IN THE COMMUNICATOR/1000. . .

The COMMUNICATOR is a technical publication designed for HP 1000 computer users. Through technical articles, the direct
answering of customers’ technical questions, cataloging of contributed user programs, and publication of new product
announcements and product training schedules, the COMMUNICATOR strives to help each reader utililize their HP 1000's
more effectively.

The Feature Articles are clearly the most important part of the COMMUNICATOR. Feature Articles are intended to promote a
significant cross-fertilization of ideas, to provide in-depth technical descriptions of application programs that could be useful to
a wide range of users, and to increase user understanding of the most sophisticated capabilities designed into HP software.
You might think of the COMMUNICATOR as a publication which can extend your awareness of HP 1000's to include that of

thousands of users worldwide as well as that of many HP engineers in Data Systems factories at Cupertino, California and
Grenoble, France.

To accomplish these goals, editors of the COMMUNICATOR actively seek technical articles from HP 1000 customers, HP
Systems Engineers in the Field, and Marketing and R&D Engineers in the factories. Technical articles from customers are most
highly valued because it is customers who are closest to real-world applications.

WIN AN HP-32E CALCULATOR!

Authoring a published article provides a uniquely satisfying and visible feeling of accomplishment. To provide a more tangible
benefit, however, HP gives away three free HP-32E hand-held calculators to Feature Article authors in each
COMMUNICATOR/1000 issue! Authors are divided into three categories. A calculator is awarded to the author of the best
Feature Article in each of the author categories. The three author categories are:

1. HP 1000 Customers;
2. HP field employees;

3. HP division employees.

Each author category is judged separately. A calculator prize will be awarded even if there is only one entry in an author
category.

Feature Articles are judged on the following bases: (1) quality of technical content; (2) level of interest to a wide spectrum of
COMMUNICATOR/1000 readers; (3) thoroughness with which subject is covered; and, (4) clarity of presentation.

What is a Feature Article? A Feature Article meets the following criteria:

1. Its topic is of general technical interest to COMMUNICATOR/1000 readers;
2. The topic falls into one of the following categories —

OPERATING SYSTEMS

DATA COMMUNICATIONS
INSTRUMENTATION
COMPUTATION
OPERATIONS MANAGEMENT
LANGUAGES

EDITOR’S DESK

3. The article covers at least two pages of the COMMUNICATOR/1000, exclusive of listings and illustrations (i.e., at least 1650
words).

There is a little fine print with regard to eligibility for receiving a calculator; it follows. No individua! author will be awarded more
than one caiculator in a calendar year. In the case of multiple authors, the calculator will be awarded to the first listed author of
the winning article. An article which is part of a series will compete on its own merits with other articles in the issue. The total of
all articles in the series will not compete against the total of all articles in another series.

All winners of calculators will be announced in the issue of the COMMUNICATOR/1000 in which their articles appear. Again, all
Feature Articles are judged by an impartial pan=al of three DSD Technical Marketing Engineers.

A SPECIAL DEAL IN THE OEM CORNER

When an HP 1000 OEM writes a Feature Article that is not only technically detailed and insightful but also application-oriented
as opposed to theoretical, then that OEM may ask that the article be included in THE OEM CORNER. A Feature Article included
in THE OEM CORNER may contain up to 150 words of pure product description as well as a picture or illustration of the OEM'S
product or its unique contribution. HP's objective is twofold: (1) to promote awareness of the capabilities HP 1000 OEMs’
products among all HP 1000 users; and, (2) to publish an article of technical interest and depth.

IF YOU'RE PRESSED FOR TIME.. ..

If you are short of time, but still have that urge to express yourself technically, don’t forget the COMMUNICATOR/1000 BIT
BUCKET. It's the perfect place for a short description of a routine you've written or an insight you've had.

THE MECHANICS OF SUBMITTING AN ARTICLE

If at all possible please submit an RTE File containing the text of your article recorded on a Minicartridge (preferrably) or on a
paper tape along with the line printer or typed copy of your article. This will help all of us to be more efficient. The Minicartridge
will be returned to you promptly. Please include your address and phone number along with your article.

All articles are subject to editorship and minor revisions. The author will be contacted if there is any question of changing the
information content. Articles requiring a major revision will be returned to the author with an explanatory note and suggestions
for change. We hope not to return any articles at all; if we do, we would like to work closely with the author to improve the article.

HP does, however, reserve the right to reject articles that are not technical or that are not of general interest to
COMMUNICATOR/1000 readers.

Please submit your COMMUNICATOR/1000 article to the following address:
Editor, COMMUNICATOR/1000
Data Systems Division
Hewlett-Packard Company
11000 Wolfe Road

Cupertino, California 95014
USA

The Editor looks forward to an exciting year of articles in the COMMUNICATOR/1000.
With best regards,

The Editor

EDITOR’S DESK

LETTERS TO THE EDITOR

Dear Ms. Editor,

| was pleasantly surprised to see my letter in the Volume IV issue 6. The fact that you have replied has encouraged me to write in
these requests. From my as-far-out-as-one-can-get end user’s point of view the HP 1000 RTE stands up very well, but there are
a few things | would like to see:

e A faster version of the Heip program.

e Though the HP 1000 has a nice internal byte addressing system, FORTRAN doesn't know it. | would like to see some
character string capability, I'm tired of the 2HXX stuff.

e Selling videotapes which could teach me about the HP 1000 system.
Regards,

C. S. Hoppman
South Pacific Commission
New Caledonia

Dear Mr. Hoppeman,

Usually the Communicator/1000 doesn’'t respond to enhancement requests, but the introduction of the new RTE-6 Operating
System and the new FORTRAN 77 Compiler has made many an enhancement request reality. The first one you mention, a faster
HELP program, has been included as part of the RTE-6 Operating System. Now the HELP program not only finds your error
messages much faster, but there is also an on-line quick reference guide for terminal commands. Your second request for
string capability, is available in the new FORTRAN 77 Compiler. No longer do you have to struggle with the 2HXX, and the
FORTRAN 77 Compiler also has string manipulation functions like concatenation. Please note that program development in
FORTRAN 77 is only available under the RTE-6 operating system. Your third request for videotape lectures, is only available for
FORTRAN 4X. Please consult Volume V Issue 1 for information on how to order the Fortran videotape. Thanks for the interest in
our products.

Sincerely

Ms. Editor

EDITOR’S DESK

Dear Ms. Editor,

The article presented by Mr. Jeff Deakin (Volume V issue 2) is very useful for a system with limited disc space. However, a
further gain in disc space organization can be obtained by grouping all the relevant files into a single job file and applying a
batch mode processing technigue.

This can be done by merging source files, procedure files, data files and documentation files into a job file named “&TEST" as
follows:

:JO,&TEST
:RU,FTN4,5,6,XTEST
FTN4,L

PROGRAM TEST

END
ENDs
:OF ,TEST
:RU,LOADR, ,XTEST
:RU, 106G
DATA
:PU,&TEST
:0F,106G
+EOQJ
DOCUMENTATION
THIS IS A TEST PROGRAM FOR
END OF DOCUMENTATION

To RUN this program, simply type
RU,JOB,&TEST (EXECUTE]
As the relocatable files are purged at the end of Job, No disc space are required to store the relocatables which release more
disc space for program storage. The cartridge will be very neat as all the procedure files, source code, documentation as well
as data can be merged into a single file.
YOU NEED NOT LOOK AROUND FOR BITS AND PIECES OF A SET OF FILES ANY MORE !
The only disadvantage is that all commands and errors will be displayed at the system console.
Sincerely,
W. S. Wong

VARTA PE LTD.
Singapore

Dear Mr. Wong

Thank you for forwarding this information to the Communicator/1000, | am sure some of our readers will appreciate this
information.

Sincerely,

Ms. Editor

7

EDITOR’S DESK

Dear Ms. Editor,

Are you aware of any utilities which will read a 9895 8" floppy from the HP 85, on the HP 1000 with a 9895 drive? If so, please
could you forward either the software listing, or information leading to where | could obtain this utility.

Sincerely,

Dereck Roach
Solar Energy Research Inst.
Western Australia

Dear Mr. Roach,

In order for you to transfer data files between an HP 85 to an HP 1000 via an 8” floppy from an HP 9895 disc drive, the files must
be in LIF format. Currently there is a utility program available from th HP 85 User's Group which has the capability to transfer a
file to the 9895 in LIF Type 1 file format. On the HP 1000 side, there is a utility program supported under the new RTE-6
Operating System which also supports the LIF Type 1 file format and is called '%LIF. These two utilities will give you the
capability to transfer files in the LIF Type 1 format. For more information on the new RTE-6 Operating System see the Bulletin
section of this issue.

Sincerely,

Ms. Editor

BIT BUCKET

FILE MANAGEMENT USING SYMBOLS AND RESERVED WORDS

Arthur P. Briscoe/Revion Health
Care Group, Scarsdale NY

The six character limitation on HP File Manager file names is not a serious limitation but it is sometimes inconvenient. It would be
nice if at least ten characters were available which would allow for the creation of a file which had a more meaningful name.
Combining symbols with text and using reserved words is one way | have found to expand the meaning of a file name as well as
help control the files created by all members of the programming staff.

File naming conventions may be a low priority subject in view of all the other problems associated with a project; however, when
a file is desperately needed (usually at 10:00 p.m. after the programmers left and just before a next day deadline) the name
suddenly becomes the most important topic of discussion.

The usual solution is to try to guess the file name and compare this name to a directory listing where there may be one to two
hundred names. If this is not successful, the next step is to try to reach the file owner by phorie. This may or may not be
successful. If you try to reach an individual who just left the staff (possibly on bad terms) a phone call may bring other words
none of which happens to include a file name.

A programming staff can generate numerous kinds of files that have a variety of uses. The file that is usually generated most
and is probably considered to be of greatest importance is the program source file. There are however, numerous other files
created which are equally important. Consider the following:

-

. File Manager transfer files used to load programs, set system dates and times, initialize terminals, RP programs, etc.

2. Files for use as input to the Relocating Loader.

3. Data base schemas.

4. Report files for input to Query.

5. Data files for input the Image utilities such as files for DBBLD, DBULD and DBLOD.

6. A WELCOM file for initializing a system after bootup.

7. A HELLO file for use by the users copy of File Manager which the user logs on to in an RTE system with Session.

8. An initialization file for input to the DS utility DINIT.

9. An answer file for the Accounts Manager utility program ACCTS.
10. Binary library files.
This list could easily be continued since there are many different files that are created during the time that an HP system is
utilized at an installation. Usually the number of files increases when a new product is added where files may be used to
initialize and/or maintain the new product.
Although a six character file name can be arranged with more combinations and permutations than probably could be used, it
also follows that the name should be meainingful. A file named “XEGJSV” does not offer the slighest suggestion as to its use to
anyone but the owner of the file. Sometimes the owner of the file will not recognize the name. This can be easily demonstrated

by passing around a large directory listing and asking the owners to identify their files. Many file names will be identified but
many will not.

BIT BUCKET

In order to help determine the general function of a file, it is helpful to prefix the file name with a symbol, a combination of
symbols, or use a reserved word. The central idea is to break down files into functional categories such as transfer files, loader
files, source files, or schemas and to assign selected symbols to each functional category. When a file has a very specialized
function, it should be named with an exclusive or reserved word. File classifications should be made as quickly as possible
since the symbols or names can be revised at a later time if the origional classification did not turn out to be suitable.

HP suggests using a standard set of file conventions in the RTE-IVB Systems Managers Manual in the section called “File
System Conventions.” The chapter identifies several symbols which turn out to be a good start. After installation of our two HP
1000 systems with FORTRAN, BASIC, Graphics, DS, Image, RJE, a 7906 and a 7925 (120M byte disc) the importance of this
chapter and good file organization became obvious.

The following table was derived by enhancing the list recommended by HP. New symbols were added and the idea of reserved
words was also included. This list will be under constant revision as new symbols and words are added. For no particular
reason | will list the reserved words first followed by the symbols.

NAME/SYMBOL
PREFIX EXPLANATION
LEGEND This file contains the listing of all the symbols and reserved words as shown here. This is one of the few
source files allowed on LU 2 or LU 3 so that it can be accessed by everyone whenever necessary.
INFO A file containing text for use as the Session Sign-On file. This file is maintained by the System Librarian and
contains any information which may be important to all users such as scheduled maintenance times, new
subroutines or software, and general announcements.
WELCOM The infamous WELCOM file used after bootup.
FTEMP A "template” used as a documentation header for all production FORTRAN programs. No program will be
cataloged without it.
& The current version of a FORTRAN source program as known by all FORTRAN users.
< The previous revision of a FORTRAN source program. (Since this version is usually not compiled the “&" is
not used).
Example: &RGEN = Version 1.5
<RGEN = \Version 1.4
> Second previous revision of a FORTRAN source program.
Example: &RGEN = Version 1.5
<RGEN = Version 1.4
>RGEN = Version 1.3
&& Future revision of a FORTRAN source program or subroutine.
Example: &RGEN = Version 1.5
&&RGEN = Version 1.6
& Test program for a subroutine or another program. The name is one less character than the name of the
subroutine or program being tested.
Example: &RGE = Test program for routine &RGEN.
% The standard binary output file from the FORTRAN compiler.

10

BIT BUCKET

¥/

*L

Used to identify general File Manager transfer files. This type of file can be useful in performing various
tasks such as purging files, running programs, etc.

Example: *IMULT = Initialize Multipoint line
File Manager transfer file used specifically to "RP" programs and/or segments.
File Manager transfer file used specifically to "RP,,” programs and/or segments.

File Manager transfer file used specifically to load programs.

Example: *LDBLD = Load program DBBLD

File Manager transfer file used specifically to list a program and associated subroutines. It usually
contains a series of “LI” commands that lists a main program and its associated subroutines. The first "LI”
command should list the transfer file to provide an index into the list- ing that will be produced.

|dentifies all Session Monitor Hello files.

Files to be used with the Relocating Loader.

Example: RU,LOADR,[RGEN = Load all &RGEN programs
The standard list file for output from the FORTRAN cornpifer.

A command file containing file names to be used by the MERGE utility.

Example: RUMERGE =RGEN = Merge all &RGEN binaries.

A binary library or destination file created by the MERGE utility. (This is the new symbol used by HP for
libraries.)

Example: RU,MERGE,=RGEN,$RGEN = Merge all binaries associated with &RGEN.

Files for input to QUERY which produce reports as output.
Example: RU,QUERY,?RPORT

Data base schema.

Example: RU,DBDS,@CDMS1

Data file containing formatted data suitable for input to the Image utility DBBLD.
Exampie: RU,DBBLD,fERMSG

A file that can be purged. These files are the first to go when additional room is required on a disc LU.
Binary absolute object code.

Accounts Manager command file.

Example: RU,ACCTS,)ACCT

11

BIT BUCKET

Locating a file is easily performed using the "DL" command. If you are locking for a file that loads a program the sequence may
be:

:DL,#L----::-11
CR=00011
ILAB=CR11 NXTR= 00205 NXSEC=082 #SEC/TR=128 LAST TR=00288 #DR TR=02

NAME TYPE SIZE/LU OPEN TO

«LF4X 00004 00003 BLKS (Load FORTRAN 4X)
«LLDBSP 00004 00002 BLKS (Load DBSPA)
«L.DBLD 00004 00007 BLKS (Load DBBLD)
+LQURY 00003 00007 BLKS (Load QUERY)
«LDBUL 00004 00002 BLKS (Load DBULD)
«LDBLO 00004 00003 BLKS (Load DBLOD)
+LBASC 00004 00003 BLKS (Load BASIC)

With only four characters remaining to define a file after using “*L” it may be necessary to probe into the file using the Editor to
further clarify the file contents, but usually four characters can be chosen which will give a good indication as to its use.

As can be seen, with little effort, an efficient method can be used to assist in locating files of interest with out imposing a great
hardship on any staff member. Gradually implementing this type of idea will save time in the long run. It will also cause you to
give more attention to other kinds of files, which if managed properly, can eliminate the time lost in running repetitive tasks. This
method has proved to be helpful in the area of operations and configuration management.

12

BIT BUCKET

SCHEDULING BASIC ON MULTIPLE TERMINALS
Oiaf Meyer/HP Copenhagen

The following program was triggered by one of our customers, who wanted to run multiple copies of BASIC on an RTE-IVB
system. The system had Session Monitor and Spooling, 64k words of memory, and one 7900 disc drive. He wanted to run
BASIC from 12 terminals.

This customer obviously had problems both with lack of memory and of LG-tracks on the disc. If you are scheduling BASIC from
12 terminals, you will have 12 copies of the FMGR swapped out, occupying around 36 LG-tracks. Also you will have 12
ID-segments filled out for the FMGR copies. Since the terminal users are not using the FMGR copies, it would be nice to free the
above resources.

So rather than scheduling BASIC directly, the terminal users schedule the following program, that will do the following:

1. pick up true lu number xx and form FMGXX and BASXX
2. blank the id-segment for basic copy 'BASXX

3. do an '‘OF,FMGXX,8'
4

schedule BASXX immediate, no wait

When the terminal user is through using BASIC (‘bye’), he will not receive the usual *;’ from the FMGXX copy, since this has
been removed from the system. Thus, to do a normal log-off he must generate a breakmode prompt by hitting any key and then
issue an ‘RS’ command to reschedule the FMGXX copy. Then he will be able to do a normal log-off.

FTN4,L
PROGRAM BASIC() ,0FF FMGXX, SCHED. BASXX, OM-810830-C

CIII

c

c THIS PROGRAM WILL ‘OFF,8’ FMGXX PRESENTLY RUNNING UNDER THE
c SESSION AND SCHEDULE THE CORRESPONDING BASIC COPY BASXX, THUS

c AVOIDING WASTE OF LG-TRACKS USED TO HOLD THE SWAPPED FMGR COPIES
c UNDER NORMAL SCHEDULING OF BASIC.

c IT IS ASSUMED THAT THE ID SEGMENT FOR BASIC IS FILLED OUT,

c I1.E. AN ’RP,BASIC’ HAS BEEN PERFORMED BEFORE SCHEDULING THE

c PROGRAM. THIS COULD BE ACCOMPLISHED IN THE ‘WELCOM’ FILL.

c NOTE, THAT WHEN BASIC IS TERMINATED WITH THE ‘BYE’ COMMAND,
c YOU MUST HIT A KEY TO GET A SYSTEM PROMPT AND ISSUE AN 'RS*

c COMMAND TO RESCHEDULE FMGXX AND THEN DO A NORMAL LOG-OFF.

c
c
c
c

OLAF MEYER, HP A/S, DENMARK

(AR R R X A XX RS R RS2 R R AR RS R RS RRRRRSR RS RS R RS R E X

13

BIT BUCKET

c
INTEGER IBUF1(14),IBUF2(3),NAMEC(3),1,1A,INUM,ITEST,LUT,IERR
c
DATA IBUF1/2HOF,2H,F,2HMG,2H ,2H,8/,1BUF2/2HBA,2HS1,2HC /,
+ NAME/2HBA ,2HST ,2HC /
c
C~--GET TRUE LU #
c
ITEST=1
CALL LUTRUCITEST,LUT)
c
C---CONVERT LUT TO ASCII
c
I=KCVTC(LUT)
c
C---IF LUT IS LESS THAN 10, MAKE 1 = 0X (CHANGE SPACE TO 0)
c
IFCLUT .LT. 10> I=1+10000B
c
C---PLACE I IN STRINGS IBUF1 & IBUF2 (DEC. STRING ARITHM.)
c
CALL SMOVE(I,1,2,I1BUF1,7)
CALL SMOVE(I,1,2,IBUF2,4)
c
C---BLANK ID-SEGMENT OF ‘BASXX’
c
CALL IDRPD(CIBUF2,IERR)
IFCIERR .NE. 0> GO TO 9000
c
C---/0F,8’ FMGXX
c
INUM=10
1A=MESSSCIBUF1, INUM)
c
C---RESTORE ‘BASIC’ TO ‘BASXX’
c
CALL IDDUP(NAME,IBUF2,1ERR)
IFCIERR .NE. 0- GO TO 9001
c
C---SCHEDULE BASXX IMM. NO WAIT
c
CALL EXEC(10,I1BUF2)
GO TO 9999
c

9000 WRITEC1,10) IERR
10 FODRMAT(/"“BASIC, ERROR IN CALL IDRPD:*", 15)
GO TO 9999

9001 WRITE(C1,20) IERR

20 FORMAT(/'"BASIC, ERROR IN CAL IDDUP:",IS)
GO TO 9999

9999 END
ENDs

14

BIT BUCKET

ONE MORE TIME

Dave Markwald/HP Bellevue

INTRODUCTION

When booting up an RTE operating system there is the need to set the system time. Frequently, this task is ignored or forgotten,
although RTE sends a 'SET TIME' message to the system console. The problems from having an incorrect system time range
from receiving editor, compiler or loader listings which are incorrectly dated, to obtaining measurment data from automatic
tests, data acqusisiton, or process control operations that do not correspond to real world time, thereby invalidating costly or
unrepeatable events. Another problem is encountered when a remote DS/1000 node is booted and there is not an operator or
system console available to interactively set the system time.

Currently, there are several time setting programs in existence. For instance the RTE-IVB System Manager's Manual (92068-
90006) contains the *STIME example while the DS/1000-1V Network Manager's Manual Vol. | (91750-90010) has a remote
bootup example. Unfortunately, these examples are narrow in their application. The RTE initialization program, RTEIN, was
developed to be a broadly based routine capable of executing on all current RTE operating systems (II/11I/IVA/IVB/6/L/XL).
RTEIN is able to set the system time either through interactive exchanges with an operator or by accessing a source node over
a DS/1000 network. Additionally, RTEIN has the capability to set FMGR global 1P thus contributing a powerful flexiblity to the
boot process.

HOW DOES IT WORK?

Interactive RTEIN execution begins by telling the operator to set the system time, then prompts for the MONTH/DAY/YEAR. The
operator supplied date is parsed into integer values including corrections for leap year and then checked for legality.
Incidentaly, the YEAR value is entered as the last two digits of the year and RTEIN will generate the correct four digit year from
1974 10 2075. lllegal dates cause an error message and the operator is reprompted for a legal date. Successful entry of a legal
date allows RTEIN to prompt for the time in HOURS:MINS:SECS (24-hour clock). lllegal times cause a corresponding error
message to be displayed and the operator is reprompted for a legal time. If no date or time is entered, RTEIN will skip setting
the system time.

For DS/1000 remote operations RTEIN makes a DEXEC call to obtain the time at the source node specified in the run string. An
unsuccessful DEXEC call will revert RTEIN to the interactive mode of operation.

Once a useable date and time are available the operating system type is determined through a call to the FORTRAN callable
routine OPSYS, which interfaces to the MATH/FORMATTER Library assembly subroutine .OPSY. Based on the system type the
date and time values are constructed into time messages compatible with the executing operating system. For RTE-Il/11I/1V/6
operating systems the time is set by calling the system subroutine MESSS. For RTE-L/XL operating systems the subroutine
STIML is used to set the system time. STIML is necessary because the RTE-L/XL MESSS subroutine is capable of processing
only the BASE SET operator commands, however the ‘TM' command is a member of the COMND SET (92070-1X076) operator
commands and is executed by the system subroutine TM.. {92070-1X105). The technique used by STIML is to emuiate the
COMND module ‘TM’ process by developing the required parameters and calling the TM.. subroutine directly.

Once the system time is set, RTEIN will echo it and prompt for operator approval. A negative operator response results in
repeating the time setting process.

Upon successfully setting the system time the operator is prompted for the need to set FMGR global 1P. However, if RTEIN is in
its remote mode of operation, FMGR Global 1P is set according to the value of the third run string parameter. Next, the DS/1000
program UPLIN is scheduled to run immediately to place it into the time list corresponding to the new system time (this must be
done by the WELCOM file for RTE-L/XL systems).

RTEIN then passes the chosen Global 1P value to FMGR and terminates.

15

BIT BUCKET

INSTALLING IT ON YOUR SYSTEM

RTEIN was written to be compatible with both FTN4 and FTN4X. Compiler option ‘D’ will cause RTEIN to be compiled for use
with DS/1000; alternately, it can be compiled to avoid using DS/1000. Most CRT messages use inverse video and have been
tested with both 264X and 262X terminals. When loading be sure to specify access to the SSGA area if you are using the
DS/1000 version. Note that non-L/XL systems do not need the STIML subroutine and can ignore the undefined external. Some
subroutines from the Decimal String Arithmetic Routines Library(24306-60001) are used by RTEIN. Typically, RTE!N is loaded
temporarily and then saved as a type 6 file.

IN CONCLUSION

| like to thank Dick Deonigi/HP Bellevue SEO for the initial idea and feature suggestions. Also Kent Ferson/DSD Technical
Marketing for the method of setting the RTE-L/XL time. Happy time setting!

FTN4,L,D
PROGRAM RTEINC19,89),RTE INITIALIZATION (W/DS) «811102.1513>

PROGRAM RTEINC3,89),RTE INITIALIZATION (NO DS) «811102.1513»
D. MARKWALD HP/NSR-BELLEVUE SEOD

I E XX AR SRR RS AR R AR R R R A R R R R R R i il A0 2 R RS R D X

* *
« EDIT & COMPILE RTEIN ACCORDING TO YOUR NEED FOR DS *
+« THE D COMPILER OPTION WILL INCLUDE THE DS CAPABILITY «
+ RTEIN CAN BE COMPILED EITHER WITH FTN4 OR FTN4X *
* *
IXZEEEREEREREEE AR RS RS ERRRRRRRRR R SRR EEERR R R RS R R RS R XN S 2 J
RTEIN IS USED TO SET SYSTEM TIME & FMGR GLOBAL 1P.

RTEIN SHOULD BE EXECUTED FROM THE WELCOM FILE AS FOLLOWS:

:SV,4,,IH #++ SAMPLE WELCOM FILE

:OF ,UPLIN,FL (€--------mmmcemmmm e +

:RU,RTEIN [,LUOP [,NODE [,0PTN11] I

:IF,1P,NE,1,3 1

:DP,PACKING LU 2 & LU 3 +-- Required for RTE L/XL and
:PK,-2 I DS/1000 operations to remove
:PK,-3 I UPLIN from the time list,
:ONJUPLIN (----scmcmr e e e e e o= + set the system time, and
:SVv,0,,IH reschedule UPLIN.

tEX

WHERE: LUOP - LOGICAL UNIT NUMBER OF SCHEDULING TERMINAL.
NODE - NODE NUMBER OF A DS/1000-1V NODE TO USE
AS THE TIME SOURCE.
OPTN - YES = SET FMGR GLOBAL 1P TO 1.

00000000000 OOOO0OO0OU0D

16

BIT BUCKET

OO0 OOODODOOONOODOOOOOOOO

TM FORMATS:

I1/111/1IV/6 SYNTAX - TM,YEAR,DAY,HOUR,MIN,SEC
YEAR - FOUR DIGITS
DAY - THREE DIGIT *JULIAN' DATE

L/ XL SYNTAX - TM,HOUR,MIN,SEC,MONTH,DAY, YEAR
MONTH - 1 TO 12
DAY -1T70 3

YEAR - 1976 TO 2144
NOTE: L/XL WILL NOT SET THE TIME IF
THERE ARE ANY PROGRAMS IN THE TIME LIST.

LOADING INFORMATION:
IVB/6 SYSTEMS -

0P,SS (for DS/1000 access)
REL ,XRTEIN

SEA,%OPSYS

SEA,%DECAR

FO

END

L/XL SYSTEMS -

ECHO

SNAP ,SNAP
CPAGE

SCOM Cor LCOM for RTE-XL and DS/1000 access)
OUTPUT,RTEIN
REL ,XRTEIN
SEA,%X0OPSYS
SEA,XSTIML
SEA,$CMDLB
SEA,%DECAR
END

INTEGER YEAR,JDAY,MNTH,IDAY,HOUR,MINS,SECS,MNDA(12),
+ TIMM(C15) ,0NUPLNC(GE) ,FTIMC15),LEAP,STMT ,NODE,OPTN,SYSTEM,
+ PRSBF(33),SLASH,COLON,LBCMA,CMASP,IA,IB,ICHR,IERR,I
LOGICAL FOUND,RMOT

DATA MNDA s 0, 31, 59 ,90, 120, 151, 181, 212,
+ 243, 273, 304, 334 /

DATA TIMM/2HTM,2H, ,13+2H /

DATA ONUPLN/2HON, 2H,U, 2HPL, 2HIN, 2H,N, 2HOW/
DATA SLASH/027400B/

DATA COLON/035000B/

DATA LBCMA/000054B/

DATA CMASP/026040B/

GET SCHEDULING PARAMETERS

17

BIT BUCKET

C
CALL RMPAR(CFTIM)
LUOP=FTIMC1)
NODE=FTIM(2)
OPTN=FTIM(3)
D RMOT=.FALSE.
IFCLUOP.LT.1.0R.LUDP.GT.255) LUOP=1
D IF¢(NODE) 50,80,60
D 50 NODE=-1
D 60 RMOT=.TRUE.
c
c WHICH TIME SOURCE?
c
80 CONTINUE
D IFC(RMOT) GO TO 190
c
c TELL USER TO SET TIME
C %
%+ 100 CALL REIO(2,LUOP,22H&H&RJ%&dC SET TIME %&d®,-22) %
LYC&2

102 DO 105 I=1,15
105 FTIMCI)=2H

GET DATE FROM USER

OO0

CALL REIOC2,LUDP, %

+62H%4dB by entering date as- month/day/year (ie,12/25/80) %&d® _, %
Ly +-62) %

LC&2

- _r
- -

CALL REIOC1,LUOP+400B,FTIM,-8)
CALL ABREG(IA,IB)
IFCIB.LT.1) GO TO S00
CALL SPUT(FTIM,IB+1,LBCMA)
FOUND=.FALSE.
ICHR=0
108 IERR=0
ICHR=ICHR+1
IFCICHR.GT.IB) 110,112
110 IF(FOUND) 118,500
112 IF(JSCOMCFTIM,ICHR,ICHR,SLASH,1,IERR)) 108,114,108
114 CALL SPUTC(FTIM,ICHR,LBCMA)
FOUND=.TRUE.
IFCICHR.LE.IB)Y GO TO 108
118 CALL PARSE(FTIM,IB,PRSBF)

MNTH=PRSBF(2)
IDAY=PRSBF(6)
YEAR=PRSBF(10)

c

c LEGAL VALUES?

c
ASSIGN 125 TO STMT
IFCMNTH.LT.1)> ASSIGN 120 TO STMT
IFCMNTH.GT.12) ASSIGN 120 TO STMT
IFCIDAY.LT.1.0R.IDAY.GT.31) ASSIGN 120 TO STMT
IFCYEAR.LT.0.0R.YEAR.GT.99) ASSIGN 120 TO STMT
GO TO STMT

120 CALL REIO(2,LUOP,1SHILLEGAL DATE!,-15)

GO TO 102

18

BIT BUCKET

125 IF(YEAR.GT.74) YEAR=YEAR+1900
IFCYEAR.LT.75) YEAR=YEAR+2000

c
c TAKE CARE OF LEAP YEAR
JDAY=MNDA(MNTH)+IDAY
LEAP=YEAR-4=(YEAR/4)
IF (LEAP.EQ.0.AND.MNTH.EQ.2.AND.IDAY.GT.29) GO TO 120
IF (LEAP.EQ.0.AND.MNTH.GT.2) JDAY=JDAY+1
c
c GET TIME FROM USER
C %

r 130 CALL REIO(C2,LUOP, %
+62H%4dB by entering time as- hours:mins:secs (24-hr clock) %&d® _, %

- - - r
-

¥ +-62) %

¥ DO 140 I=1,15 &

' 140 FTIM(I)=2H &

LC&Z
CALL REIOC1,LUOP+400B,FTIM,-8)
CALL ABREG(IA,IB)
IFCIB.LT.1) GO TO 500
CALL SPUT(FTIM,IB+1,LBCMA)
FOUND= .FALSE.
ICHR=0

142 1ERR=0

ICHR=ICHR+1

IFCICHR.GT.IB) 144,146
144 IF(FOUND) 150,500
146 IFC(JSCOM(FTIM,ICHR,ICHR,COLON,1,IERR)) 142,148,142
148 CALL SPUT(FTIM,ICHR,LBCMA)
FOUND=,TRUE.
IFCICHR.LE.IB) GO TD 142
150 CALL PARSE(FTIM,IB,PRSBF)
HOUR=PRSBF(2)
MINS=PRSBF(6)
SECS=PRSBF(10)

LEGAL VALUES?

(oMo}

ASSIGN 200 TO STMT
IF(HOUR.LT.0.0R.HOUR.GT.24) ASSIGN 170 TO STMT
IF(MINS.LT.0.0R.MINS.GT.59) ASSIGN 170 TO STMT
IF(SECS.LT.0.0R.SECS.GT.59) ASSIGN 170 TG STMT
GO TO STMT

170 CALL REIO(2,LUOP,1SHILLEGAL TIME?!,-15)
GO TO 130

GET DATE AND TIME FROM DS/1000-IV NODE

190 CALL DEXEC(NODE,11+100000B,FTIM,YEAR)
GO TO 120
195 JDAY=FTIM(S)
HOUR=FTIM(4)
MINS=FTIM(3)
SECS=FTIM(C2)
WRITECLUOP,990) (FTIM(CI), I=2,5),YEAR
990 FORMAT('DEXEC",4¢X,12),X,14)

[sNelvivivivivivivivieNeNel

GET OPERATING SYSTEM TYPE

19

BIT BUCKET

o0

OO0 0O0

OO0

200

210

220
230

CALL OPSYS(SYSTEM)

L OR XL?
IF(SYSTEM.LT.-25) 210,250

X/XL TM MESSAGE

12345678901 2345°5
TM, HR, MN, SC, MO, DY, YEAR

TIMM(3)=KCVT(HOUR)
TIMM(4)=CMASP
TIMM(5)=KCVT(MINS)
TIMM(E)=CMASP
TIMM(7)=KCVT(SECS)
TIMM(8)=CMASP

FIND MONTH & DAY OF MONTH
TAKE CARE OF LEAP YEAR
LEAP=YEAR-4+(YEAR/ 4

DO 220 MNTH=12,1,-1
IDAY=JDAY-MNDA(MNTH)

IF (LEAP.EQ.O0.AND.MNTH.GT.1) IDAY=IDAY-1

IFCIDAY) 220,220,230
CONTINUE
TIMM(9)=KCVT(MNTH)
TIMM(10)=CMASP
TIMM(11)=KCVTCIDAY)

CALL CNUMD(CYEAR,TIMM(12))
TIMM(12)=CMASP

CALL PARSE(TIMM,28,PRSBF)

c DECREMENT COUNTER BECAUSE TM.. DOESN’T NEED TM COMMAND

PRSBF(33)=PRSBF(33)-1

CALL STIML(PRSBF(33),PRSBF(5),IERR)
IFCIERR.EQ.34) CALL REIO(2,LUOP,20HTIME-LIST NOT EMPTYY,-20)

OO0OOO0

250

IFCIERR) 120,300,120

I17111/1V/6 TM MESSAGE

123456789012 345
™, YEAR, DAY, HR, MN, SC

CALL CNUMD(YEAR,TIMM(3))
TIMM(6)=CMASP

CALL CNUMDCJDAY,TIMM(7))
TIMM(10)=CMASP
TIMM(11)=KCVT(HOUR)
TIMM(12)=CMASP
TIMM(13)=KCVT(MINS)
TIMM(14)=CMASP
TIMM(15)sKCVT(SECS)

I = MESSS(TIMM,30)

TELL USER THE CURRENT TIME

20

BIT BUCKET

c
300 CONTINUE
D IF(RMOT) GO TO 510
IF (OPTN(510,310,510))
310 CALL FTIMECFTIM)

CALL REIOC2,LUOP,

+40H&dB System time and date is now: &de
+-40)

CALL REIOC2,LUOP,FTIM,15)

c

CALL REIO(C2,LUOP,0,0)

CALL REIDC(2,LUOP,28H8dB Correct? (YE,ND) &d® _,-28)
c2

CALL REIODC1,LUOP+400B,I1,-2)

IFCI.EQ.2HYE.OR.I.EQ.2H) 500,100
c

500 CALL REIODOC2,LUOP,0,0)
CALL REIOC2,LUOP,
+36HDo FMGR optional commands? (YE,NO) _,-36)

GET FMGR GLOBAL 1P VALUE

OO0

CALL REIODOC1,LUOP+400B,0PTN,-2)
510 TIMMC1)=0
IF (OPTN.EQ.2HYE) TIMM(C1)>=1

C
c CLEAR DISPLAY
C %
Le CALL REIOC2,LUOP,4HEHSR),-4) %
LC&Z
c RESET DS UPLIN EXECUTION TIME
C
D 1= MESSSCONUPLN,13,LUOP)
C
C RETURN FMGR GLOBAL 1P
C
CALL PRTNCTIMMC1))
END
ENDS$

21

BIT BUCKET

ASMB,R,L,C
NAM STIML,7 SET L/XL TIME 810624.0958

D. MARKWALD HP/NSR-BELLEVUE SEO
EXT TM..,.ENTR,LOGLUV

ENT STIML,CAM.O

PCNT BSS 1 PARAMETER COUNT
PBUF BSS 1 START OF BUFFER
PERR BSS 1 ERROR RETURN CODE
*
STIML NOP RETRIEVE INPUT PARMS
JSB .ENTR
DEF PCNT
LDA PCNT
STA CNT SAVE LOCALLY
LDA PBUF
STA BUF SAVE LOCALLY
LDA PERR
STA ERR SAVE LOCALLY
*
JSB LOGLU GET CONSOLE LU
DEF #+2
DEF CAM.O DUMMY PARM
STA CAM.O SET LU
*
JSB TM.. SET L/XL TIME!
DEF EXIT
CNT NOP
BUF NQOP
ERR NOP
EXIT JMP STIML,I ALL DONE
cAaM.0 OCT O DEFAULT BIT BUCKET
END
ASMB
NAM OPSYS,7 GET .0PSY FOR FTN 810505.1742
*
* D. MARKWALD HP/NSR-BELLEVUE SEO
*
EXT .ENTR,.O0PSY
*
ENT OPSYS
*
TYPE NOP
0OPSYS NOP ENTRY POINT
JSB .ENTR GET RETURN
DEF TYPE PARAM ADDRESS
*
JSB .0PSY GET
STA TYPE,!I SYSTEM TYPE
JMP 0OPSYS,I EXIT
END

22

BIT BUCKET

AN EDITOR FOR TYPE 1 FILES

Paul Henderson/Ft. Worth Texas

INTRODUCTION

Some RTE users need the capability to change an element within a type 1 file. The Hewlett-Packard interactive programs EDITR
or EDIT/1000 supplied as a part of the Hewlett-Packard RTE system cannot be used on type 1 files. An interactive program
named EDYT1 has been written to fuffill this need. A listing of this EDYT1 program is included with the article.

BACKGROUND

My application programs require a large amount of library and control reference information. This information is supplied to the
application programs in two stages. The information is originally created by using the Hewlett-Packard program EDITR or
EDIT/1000 and stored as type 4 files. One set of intermediate programs will read several of these type 4 files and combine them
into a single type 1 file. Some of the other application programs will then read and use these type 1 files. This then permits faster
operation of these application programs and aiso makes the task of programming for them much shorter and simpler in order to
get all the needed information loaded from the disc.

Frequently it is necessary to alter a piece of information in one of the type 1 files on-line between runs of application programs. It
is desirable to be able to do this without resorting to changing the type 4 file and then running the intermediate program to
convert the type 4 files to a type 1 file. This is especially true when the change will be a temporary one for only a single pass of
the application program.

The arrays of information contained in my type 1 files have been structured around the 128 word block size and record length
used in transmitting and storing this type of information. This makes it very simple to keep up with the block number and the
location in which a given piece of information is stored.

OPERATION

When the EDYT1 program is run it first requests the name of the file to be edited along with the format type for the data, the
security code and cartridge reference number, and the block number. With this input the file is opened and the appropriate
block is read from the file and the file is closed. A listing is then made on the terminal with the address for each word within the
block along with the current contents of that word. The EDYT1 program then requests an element address within the block
which is to be changed. The new value to be entered at that address within the block of data is then requested. Additional
element addresses and values are then requested until an invalid element address (less than 1 or greater than 128 for integer
types or 64 for real types) is entered which causes the updated block to be listed on the terminal and the file to be reopened
and the updated block of data to be written back onto the disc and the file to be closed. Normally a zero is entered to terminate
the edit session.

COMMENTS

Although written primarily for type 1 files, this program may be used with any type of disc file. It is not necessary to change the
file in any way and the program is useful to examine the contents of any block of any disc file. One disadvantage is that the
block number within the file must be known but with careful planning when dimensioning the arrays in the files to be stored this
is not difficult.

23

BIT BUCKET

The program is written in FORTRAN and should run with any Hewlett-Packard RTE operating system. The program could be
modified to permit output to a printer or other medium. The program handles four types of data formats. They are Integer, Octal,
ASCII, and Real. These may be specified by entering a single character in response to the program request. The default type is
Integer which is specified by the return key or a space and return. Integer may also be specified by the character |. Type ASCII
may be specified by an A or H. Real type may be specified by an E, F, or G. An Octal type is specified by an @, B, K, or O. Any
other response will not be accepted by the program and the request will be repeated until a satisfactory type is entered. An
example of the operation of the program is also shown.

CAUTION

The 128 word data block size should be retained in any modification to this program. This is due to the action of the disc driver
in overwriting the remainder of a block when a partial block is written to the disc. For example, if a 129 word data block size
were to be used the first word of the next block following the specified block would be read from the disc, but following the edit
session when the 129 words of data were written back onto the disc every word of the block following the specified block would
be changed. Thus any valid data that was on that portion of the disc would be destroyed.

A multiple of 128 words could be used safely but the entire data block would not fit conveniently on the display of the terminal.

24

BIT BUCKET

FTN4,L
PROGRAM EDYT1
c
R I I I T I TT e Y Yy Y v

C»

+
Ce Program to edit type 1 files *
Ce Written in September 1981 by Paul W. Henderson »
Ce Post Office Box 5215, Fort Worth, Texas 761080215 *
Ce (817) 732-4811 Extension 2050 *
Cs »
CI‘......'I..Q...'I..'I-...'I-..’I..'I-..Q.........Q........'Q’IQQ’!QQ'I-QQ'QQQQI-QQ
c
C Input data:
c
c IFILEC3) File name
c ISC File security code
C ICR File cartridge reference number
C IFMAT File format type(ASCII,Octal,Integer,Real)
C IBLOK Block number in the file
> IELEM Element number in the block
c

DIMENSION IDCB(144),IPRAM(5),ICLK(15),IFILEC3),IDATAC128),
1FDATA(B4)

EQUIVALENCE C(IDATAC1),FDATAC1))

The program requests the name of the file, the format type for the
data, the security code, the cartridge reference number, and the
block number within the file to be edited. The program then opens
the file and reads the data from the block specified and closes
the file. The data is then listed on the terminal in the format
requested. An element number within the block is requested and
then the new value to be put into that element is requested. The
new value is entered into the data and another element and new
value are requested. This is repeated until an invalid element
number is entered (less than 1 or greater than 128 for integers

or 64 for reals). An invalid element number causes the updated
block of data to be listed on the terminal, the file to be opened,
the updated block of data to be written back into the file, and the
file to be closed. The program then terminates.

The valid format specifications for the data types are:

OO0 0O O0O0 (9]

Integer ASCII Octal Real
I A] E
Space H B F
K G

0

25

BIT BUCKET

c
CQQQOQQQDQ!!!!QQQOGGCCQCQQ!!QGCQQQQQ.QQQQ.Q|.i.“.““"""!'.'l""
Cs *
Ce Get the LU for the terminal »
Ce [
CGQQOQQQGQQQQGQQQOQGQDQQQQOQGQlQOQOQDQQQQQQQQQQQGQQCQCQQCQ{CCQQQD!OQ!
C

CALL RMPARCIPRAM)

LUC = IPRAMC1)

IFCLUC .EQ. 0) LUC = 1
C

5 FORMAT("Error ="I8)

o
c.Q.QQQQiQQGGG'QQOQOQOQQQQGQQQOQQQDQDQQQQQQQQOQQGGQ'QGQQQ'QQOQOQ'QQQQ
Cs *
Ce Parameter eniry from the terminal keyboard *
Ce *
C!G!QQQCGQOCGGCQQCQ’O.Q!QGQ’QQQQQQ.Q..Q.QQ‘.‘QQQ'Q'QQ'Q'Q'QQOQQQGQQQQ
c

10 WRITECLUC,20)
20 FORMAT("File name ? _')
READCLUC,30)CIFILECI),I=1,3)
30 FORMAT(3A2)
IFMAT = 1HI
35 WRITECLUC,40)
40 FORMAT('Format type?_")

READCLUC,S0)IFMAT

50 FORMATC1A1)
IFMT = 1
IFCIFMAT .EQ. 1HI .OR. IFMAT .EG. 1H > GO TO 70
IFMT = 2
IFCIFMAT .EQ. 1HA .OR. IFMAT .EQ. 1HH) GO TO 70
IFMT = 3

IFCIFMAT .EQ. 1H® .0R. IFMAT .EGQG. 1HB .OR.
1 IFMAT .EQ. 1HK .0OR. IFMAT .EQ. 1HO)Y GO TO 70
IFMT = 4
IFCIFMAT .EQ. 1HE .0OR. IFMAT .EQ. 1HF .0OR.
1 IFMAT .EQ. 1HG)> GO TO 70
WRITECLUC,60)
60 FORMAT('" Format type error')
G0 TO 35
70 WRITECLUC,80)
80 FORMAT("Security code, cartridge reference? _")
READ(LUC,+)1SC,ICR
WRITE(LUC,90)
90 FORMAT(“Block number? _**)
READCLUC, »)IBLOK

26

BIT BUCKET

C

cllllllllllll'llllllIlllllllllllllllllllllllllll’ll"'llllllllllIllll
Cs »
C Get the block of data from the file *
Cs -

I I I I I I O I T T T T ST
c

CALL OPEN (IDCB,IERR,IFILE,2,ISC,ICR)

IFCIERR .LT. 0) WRITECLUC,S)IERR

CALL READF(IDCB,IERR,IDATA,128,LEN,IBLOK)

IFCIERR .LT. 0) WRITECLUC,S)IERR

CALL CLOSECIDCB,IERR)

C

C

Clllll".'lllIlll
Cs »
Cs Write a heading for the data on the terminal *
Cs -
Cs »

I I I N I I I I I T IS I TSI Y
c
CALL FTIMECICLK)
WRITECLUC,95)CIFILECI),I=1,3),IBLOK,CICLK(J),J=1,15)
95 FORMAT('" File *,4A2," Block"™,I16," at ",15A2/," ")
c
c

cll

Cs Go to the proper format section to list and edit *
cllll'l'll"lllllllllllllllllll

27

BIT BUCKET

c

Crassaaasnta st st tastatantsnnsitntaansnsnsnsnnssns Integer format

100
110
120
130

140

150

WRITECLUC,110)CI,IDATACI),I=1,128)
FORMAT(7(14*:*16))

WRITECLUC,130)

FORMAT("“Element number ? _'")

READCLUC,+)IELEM

IFCIELEM ,LT. 1 .0OR. IELEM .GT. 128) GO TO 150
WRITE(CLUC,140)

FORMAT('New Value ? _")

READCLUC, #») IDATACIELEM)

GO TO 120

CALL FTIMECICLK)
WRITECLUC,95)CIFILECI),I=1,3),IBLOK,C(ICLKCJ),J=1,15)
WRITECLUC,110)CI,IDATACI),I=1,128)

GO TO 800

Crasnsassaasastanstaatttnttsasnssnssssssssnssnns ASCII format

200
210
220

230

250

WRITECLUC,2103CI,IDATACI),I=1,128)
FORMATC10(14,1X,1A2))

WRITECLUC,130)

READCLUC,#)IELEM

IFCIELEM .LT. 1 .OR. IELEM .GT. 128) GO TO 250
WRITECLUC,140)

READ(LUC,230) IDATACIELEM)

FORMAT(1A2)

GO TO 220

CALL FTIMECICLK)
WRITECLUC,9S)CIFILECIY>,I=1,3),IBLOK,CICLK(J),J=1,15)
WRITE(CLUC,210)CI,IDATACI),I=1,128)

GO TO 800

Crosssssssstaattattastntnntansntsssssssssnssnnns Octal format

300
310
320

350

WRITECLUC,310)CI,IDATACI),I=1,128)
FORMAT(7(14":86))

WRITECLUC,130)

READCLUC,*)IELEM

IFCIELEM ,LT. 1 .OR. IELEM .GT. 128) GO TO 350
WRITECLUC,140)

READ(LUC, #)IDATACIELEM)

GO TO 320

CALL FTIMECICLK)
WRITECLUC,95)CIFILECI),I=1,3),IBLOK,C(ICLK(J),J=1,15)
WRITECLUC,310)CI,IDATACI),I=1,128)

GO TO 800

Casaaaa s s s s st sanntanannaaaaatssnansssssnssss Real number format

400
410
420

450

WRITECLUC,410)CI ,FDATACI),I=1,64)
FORMAT(4(I4":"E14.6))

WRITECLUC,130)

READCLUC, #)IELEM

IFCIELEM .LT. 1 .0OR. IELEM .GT. 64) GO TO 450
WRITE(CLUC,140)

READCLUC, »)FDATACIELEM)

GO TO 420

CALL FTIMECICLK)
WRITECLUC,95)CIFILECID>,I=1,3),IBLOK,CICLK(J),J=1,15)
WRITECLUC,410)(CI ,FDATACI),I=1,64)

GO TO 800

Cllllllllllllllllllllllllllll!l!!llllllllllllllllllllllllllllllllllll

Cs
Cs
Co

Store the updated block back into the file

Cll

28

BIT BUCKET

c
800 CALL OPEN (IDCB,IERR,IFILE,2,ISC,ICR)
IFCIERR .LT. 0) WRITE(CLUC,S)IERR
CALL WRITF(CIDCB,IERR,IDATA,128, IBLOK)
IFCIERR .LT. 0) WRITECLUC,S5)IERR
CALL CLOSECIDCB,IERR)

c
c

END
:RU,EDYT1

File name ? FILE

Format type? I

Security code, cartridge reference? 0

Block number? 1

File FILE Block 12592 at :06 AM SAT., 12 SEPT, 1981

1: 1 2: 2 3: 3 4: 4 S: 5 6: 6 7: 7
8: 8 9: 9 10: 10 11: 11 12: 12 13: 13 14: 14
15: 15 16: 0 17: 0 18: 0 19: 0 20: 0 21: 0
22: 0 23: 0 24: 0 25: 0 26: 0 27: 0 28: 0
29: 0 30: 0 31: 0 32: 0 33: 0 34: 0 35: 0
36: 0 37: 0 38: 0 39: 0 40: 0 41; 0 42: 0
43: 0 44: 0 45; 0 46: 0 47: 0 48: 0 49: 0
50: 0 S1: 0 52: 0 53: 0 54: 0 55: 0 S6: 0
57: 0 58: 0 59: 0 60: 0 61: 0 62: 0 63: 0
64: 0 65: 0 66: 0 67 0 68: 0 69: 0 70: 0
71: 0 72: 0 73: 0 74: 0 75S: 0 76: 0 77: 0
78: 0 79: 0 80: 0 81: 0 82: 0 83: 0 84: 0
85: 0 86: 0 87: 0 88: 0 89: 0 90: 0 91: 0
922: 0 93: 0 924: 0 95: 0 96: 0 97: 0 28: 0
29: 0 100: 0 101: 0 102: 0 103: 0 104: 0 105: 0
106: 0 107: 0 108: 0 109: 0 110: 0 111: 0 112: 0
113: 0 114: 0 115: 0 116: 0 117: 0 118: 0 119: 0
120: 0 121: 0 122: 0 123: 0 124: 0 125: 0 126: 0
127: 0 128: 0
Element number ? 16
New Value ? 16
Element number ? 120
New Value ? 120
Element number ? 0
File FILE Block 12592 at :07 AM SAT., 12 SEPT, 1981
1: 1 2: 2 3: 3 4. 4 5: 5 6:) 7: 7
8: 8 9: 9 10: 10 11: 11 12: 12 13: 13 14: 14
15: 15 16: 16 17: 0 18: 0 19: 0 20: 0 21: 0
22: 0 23: 0 24: 0 25: 0 26: 0 27: 0 28: 0
29: 0 30: 0 31: 0 32: 0 33: 0 34: 0 3S: 0
36: 0 37: 0 38: 0 39: 0 40. 0 41 0 42: 0
43: 0 44: 0 45: 0 46: 0 47: 0 48: 0 49:; 0
S0: 0 S1: 0 g2: 0 53: 0 S4: 0 SS: 0 S6: 0
57: 0 S8: 0 59: 0 60: 0 61: 0 62: 0 63: 0
64: 0 65: 0 66: 0 67 0 68: 0 69: 0 70: 0
71: 0 72: 0 73: 0 74 0 75: 0 76: 0 77: 0
78: 0 79: 0 80: 0 81: 0 82: 0 83: 0 84: 0
85: 0 86: 0 87: 0 88: 0 89: 0 20: 0 91: 0
92: 0 23: 0 94.: 0 95: 0 96: 0 97: 0 98: 0
929: 0 100 0 101: 0 102: 0 103: 0 104: 0 105: 0
106: 0 107 0 108: 0 109: 0 110: 0 111: 0 112: 0
113: 0 114 0 115; 0 116: 0 117: 0 118: 0 119: 0
120: 120 121: 0 122: 0 123: 0 124: 0 125: 0 126: 0
127: 0 128 0

29

BIT BUCKET

AUTOMATIC SCALING AND LOGARITHMIC PLOTTING FOR
GRAPHICS/1000-11

Terry O’'Neal/Naval Research Lab, Washington D.C.
Elaine Mosakowski/HP

INTRODUCTION

The need to represent data in a form more meaningful than tabular has prompted the development of new software for general
scientific use. Hewlett-Packard's Graphics/1000-11 is far superior to the old Graphics/1000 package but two major areas in
plotting were overlooked. The new graphics package does not do scaling or handle logarithmic plotting.

The four subroutines in this article are FORTRAN callable by a user supplied plotting routine. Subroutine SCALE will linearly
scale data. Subroutine LSCAL will logarithmically scale data. Subroutine LINAX will draw a linear axis. Subroutine LOGAX will
draw a logarithmic axis. A semi-log plot can be obtained by combining linear scaling and axis drawing in one dimension with
logarithmic scaling and axis drawing in the other dimension. Both axis drawing routines will draw and label tick marks.

30

BIT BUCKET

ABSORBANCE X 1@ww 1

X 1@%w—1

MOLAR ABSORPTIVITY

BRA.

PLOT 1 ' UV SPECTRUM
8.
6.
4.
ot
a. L ! 1 | J
300. 400. Sea. 62e. 700.
WAVELENGTH <{rm)
PLOT 31 PVP with Fo +3
254,
2003.,
1@,
120.
se.
L

-1
12 12
CONCENTRATION <(M>

31

LOG Y AXIS

PLOT 2 : O-B ., «—P . #»—Cd . X-Fe
12."—
R R A IEEE T
-
ra
L
11— R
Rabis)
- X
~ Xox
b3 »
o B
o K
v % . . X
2 X B KK
S g G-, e-x o
— - i @
= eIl
P -
'3
[
z
n]
0
4
g
a. 1 { { |
B. 18. 2a. 30. 40.
TIME IN MINUTES
PLOT 4 « EXAMPLE OF A LOG LOG PLOT
7
18°
]
12
5
12 [~
‘
12 —
a
10 I~
2 I—‘a—*
12 -2 it } a 1 2 3
1a 18 10 18 18 1@

LOG X AXIS

BIT BUCKET

FTN4X,L
SUBROUTINE SCALE (A,NP,AMIN,AMAX,TIC,IZERO,IEXP,LU,ISCAL)
c
c THIS ROUTINE COMPUTES MAX & MIN VALUES,SCALES DATA TO
c E FORMAT AND DETERMINES THE NUMBER OF TICK MARKS PER AXIS
c A - ARRAY TO BE SCALED
c NP - NUMBER OF POINTS IN ARRAY A
c AMIN - MINIMUN VALUE OF A
c AMAX - MAXIMUM VALUE OF A
c TIC - NUMBER OF TICK MARKS ON AXIS
c IZERO - SET TO 0 TO FORCE ORIGIN TO ZERO,NORMALLY = 1
c IEXP - EXPONENT OF BASE 10 TO WHICH A 1S RAISED
c LU - LOGICAL UNIT NUMBER OF TERMINAL
c ISCAL - SCALING, 0 FOR AUTOMATIC, 1 FOR MANUAL
c
DIMENSION A(256)
IsML = 0
c
c FIND MAX AND MIN VALUES OF A
c
IF CISCAL.EQ.1) GO TO 25
AMAX = AC1)
AMIN = AC1)
c

DO 10 I = 1,NP

IF (ACI).GT.AMAX) AMAX = ACI)

IF CACID.LT.AMIN) AMIN = ACI)
10 CONTINUE

IF (AMAX.NE.AMIN) GO TO 15
AMAX = AMAX#1.1
AMIN = AMIN+0.9
15 IF (I1ZERO.NE.O. OR .AMIN.GE.O0> GO TO 25
WRITE (LU,20)
20 FORMAT ('™ #s DATA HAS NEGATIVE VALUES ORIGIN CAN’T BE ZERO ##"/)

[ZERD = 1
25 IF (IZERO.EQ.0) AMIN = 0.
IEXP = 0
DIF = ABS(AMAX-AMIN)
c
C IF DIF IS LESS THAN 1/2 MAGNIFY SCALE
c
IF (DIF.GT.0.5) GO TO 40
ISML = 1
c

30 DO 35 K = 1,NP
35 ACK) = ACKI+10.

AMIN = AMIN+10.

AMAX = AMAX#*10.

IEXP = TEXP-1

DIF = DIF«10.

IF (DIF.LT.1.> GO TO 30
GO TO 60

SCALE DATA TO E FORMAT AND SAVE EXPONENT CIEXP)

OO0

40 IF (ABS(AMAX).GE.1. OR .ABSC(AMIN).GE.1)> GO TO S50

32

BIT BUCKET

OO0

c

c

c

c

c

c

c

c

45

S0

55

60

65

70

75

80

85

90

95

DO 45 K = 1,NP
ACK) = ACK)*10.

AMIN = AMIN+10.
AMAX = AMAX+10.
IEXP = TEXP-1
GO TO 40

IF (ABSC(AMAX).LE.1000. AND .ABSC(AMIN).LE.1000) GO TO 60

DO 55 K = 1,NP
ACK) = A(K)/10.

AMIN = AMIN/10.
AMAX = AMAX/10.
IEXP = TEXP+1
GO TO SO

DETERMINE INTERVAL FACTOR

DIF = ABSC(AMAX-AMIN)

IF (DIF.GT.S5.) GO TO 65
FACTR = 1.0

GO TO 100

IF (DIF.GT.10.) GO TO 70
FACTR = 2.0
GO TO 100

IF (DIF.GT.25.) GO TO 75
FACTR = 5.0
GO TO 100

IF (DIF.GT.50) GO TO 80
FACTR = 10.0
GO TO 100

IF (DIF.GT.125) GO TO 85
FACTR = 25,
GO TO 100

IF (DIF.GT.250) GO TO 90
FACTR = 50.
GO TO 100

IF (DIF.GT.S00) GO TO 95
FACTR = 100.
GO TO 100

FACTR = 200.

C HANDLE ROUND-OFF ERROR

c

c
c

100

ONE = 0.99999
IF (AMIN.GE.0.) GO TO 105

#ss+ FOR NEGATIVE NUMBERS

XX X

33

BIT BUCKET

c
TRUNK = (AMIN/FACTR)-ONE
AMIN = AINTCTRUNK) +FACTR
IF (AMAX.GE.O0) GO TO 110
TRUNK = AMAX/FACTR
AMAX = AINT(TRUNK)+FACTR
GO TO 115
c
C =+#+ss FOR POSITIVE NUMBERS ssss
c

105 TRUNK = AMIN/FACTR
AMIN = AINT(TRUNK)+FACTR
110 TRUNK = (AMAX/FACTR)+ONE
AMAX = AINT(TRUNK)*FACTR

C
c I ZZ XX ZZE A RSS2SR ERZI SRS R R 2 X 2
C
115 DIF = ABSC(AMAX-AMIN)
C
C DETERMINE NUMBER OF TICK MARKS PER AXIS
C
IF (DIF.NE.1.) GO TO 120
TIC = 1.
GO TO 150

120 IF (DIF.GT.10) GO TO 125
DIF = DIF+10.
GO TO 120

125 IF (DIF.LE.100) GO TO 130
DIF = DIF/10.
GO TO 125

130 TIC = 3.
IF (DIF.EQ.100.) GO TO 145

IF (DIF.EQ.80.) GO TO 135S
IF (DIF.GE.60.) GO TO 150
IF (DIF.EQ.50.) GO TO 14S
IF (DIF.EQ.40.) GO TO 13S
IF (DIF.EQ.30.) GO TO 150
IF (DIF.EQ.25.) GO TO 145
IF (DIF.EQ.20.) GO TO 140
IF (DIF.EQ.15.) GO TO 150
IF (DIF.EQ.12.5) GO TO 145
C

135 TIC = 4.
GO TO 150

140 TIC = 2.
GO TO 150

145 TIC = S.

150 CONTINUE
RETURN
END

34

BIT BUCKET

FTN4X,L
SUBROUTINE LSCAL (A,NP,PMIN,PMAX,TIC,LU,ISCAL,LERR)

LOGARITHMIC SCALING ROUTINE TO COMPUTE MAX & MIN TO LOG BASE 10
AND DETERMINE THE NUMBER OF TICK MARKS PER AXIS

A - ARRAY TO BE SCALED

NP - NUMBER OF POINTS IN ARRAY X

PMIN - POWER TO BASE 10 OF MINIMUM VALUE OF ARRAY A

PMAX - POWER TO BASE 10 OF MAXIMUM VALUE OF ARRAY A

TIC - NUMBER OF TICK MARKS ON AXIS

LU -~ LOGICAL UNIT NUMBER FOR ERROR OUTPUT

ISCAL - SCALING, 0 FOR AUTOMATIC, 1 FOR MANUAL

LERR -~ LOG ERROR, CAN’T TAKE LOG OF A NON-POSITIVE NUMBER

O0OO0OO0OO0OO0OOOO0O000

DIMENSION A(256)

TEST ARRAY FOR NON-POSITIVE VALUES

OO0

LERR = 0

DO 10 I = 1,NP
IF (ACI).GT.0> GO TO 10
LERR = 1

10 CONTINUE

[F (LERR.EQ.1) WRITE (LU,15)
IF (LERR.EQ.1> GO TO 920
IF (ISCAL.EQ.1) GO TO 25
15 FORMAT(C* STOP ' YOU CAN’T USE LOGARITHMIC SCALING ROUTINE (LSCALO"

-/ FOR NON-POSITIVE VALUES, USE A LINEAR SCALING ROUTINE*™)
c
C DETERMINE VALUES OF MAX AND MIN
c
AMIN = AC1)
AMAX = AMIN
C

DO 20 I = 2,NP

IF (AMIN.GT.ACI))> AMIN = ACI)

IF (AMAX.LT.ACI)) AMAX = ACID)
20 CONTINUE

c
IF (AMIN.NE.AMAX) GO TO 30
AMIN = 0.9+AMIN
AMAX = 1.1+AMAX
GO TO 30
25 AMIN = PMIN
AMAX = PMAX
C
C COMPUTE LOG OF MIN AND MAX VALUES
c
30 POWL = ALOGTCAMIN)
MINP = POWL
POWH = ALOGTC(AMAX)
MAXP = POWH

35

BIT BUCKET

IF (ABS(FLOAT(MAXP)-POWH).LT.1.0E-05) GO TO 35
IF (POWH.GE.0.0) MAXP = MAXP + 1

35 IF (ABSC(FLOAT(MINP)-POWL).LE.1.0E-05) GO TO 40
IF (POWL.GE.0> GO TO 40
MINP = MINP - 1

40 PMIN = MINP

PMAX = MAXP
C
C MAKE DIFFERENCE IN EXPONENTS OF MAX & MIN A MULTIPLE OF 1,2,3,4 OR S
C

IDIF = ABS(PMAX-PMIN)
IF (IDIF.LE.®) GO TO %5
IF (IDIF.EQ.7. OR .IDIF.EQ.9) PMAX = PMAX + 1
IF C(IDIF.LE.10) GO TO 55
LDIF = 15
45 IF (LDIF.GE.IDIF)> GO TO S0
LDIF = LDIF + 5

GO TO 45
50 PMAX = PMIN + LDIF
c
C DETERMINE NUMBER OF TICK MARKS PER AXIS
C

S5 IDIF = ABS(PMAX-PMIN)
IF CIDIF.NE.1> GO TO 60
TIC = 1
GO 7O 290

60 IF C(IDIF.GT.10) GO TO 65
IDIF = IDIF«10
GO TO 60

65 IF CIDIF.LE.100) GO TO 70
IDIF = IDIF/10
GO TOD 65

70 TIC = 3
IF (IDIF.EQ.100) GO TO 85
IF (IDIF.EQR.80) GO TO 75
IF (IDIF.GE.B60) GD TO 90
IF (IDIF.EQ.50) GO TO 85
IF (IDIF.EQ.40) GO TO 75
IF (IDIF.EQ.30) GO TO 90
IF (IDIF.EQ.25) GO TOD 85
IF (IDIF.EQ.20) GO TO 80
IF (IDIF.EQ.15) GO TO 90

c

75 TIC = 4
GO TO 90

c

80 TIC = 2
GO TO 90

c

85 TIC = §

C

90 CONTINUE
RETURN
END

36

BIT BUCKET

FTN4X,L
SUBROUTINE LINAXCIAXIS,AMIN,AMAX,TIC,LUG,HW,HH)
DIMENSION ITICM(G)

c

C LINEAR AXIS DRAWING ROUTINE

C

C IAXIS - 1=X AXIS , 2=Y AXIS

C AMIN - MINIMUM VALUE OF AXIS

C AMAX - MAXIMUM VALUE OF AXIS

cTIC - NUMBER OF TICK MARKS ALONG AXIS

C LUG - LOGICAL UNIT NUMBER FOR GRAPHICS OUTPUT
C HW - CHARACTER CELL WIDTH

C HH - CHARACTER CELL HEIGHT

c

C SET AXIS LENGTH IN WORLD COORDINATE SYSTEM (WCS)
c

I[F (IAXIS.EQ.1) ALEN = 114,
IF (IAXIS.EQ.2) ALEN = 70.

c
C DEFINE ORIGIN
C
X0 = 19,
YO0 = 10.
TICM = AMIN
JTICM = INT (TICM)
CALL J2mMaVv X0, YO
IF (IAXIS.EQ.2) GO TO 100
c
C DRAW X AXIS
c
CALL J2DRW (ALEN+XO, YO)
c
C LABEL X ORIGIN
c
CALL CMOVE (JTICM, N, ITICM)
CALL J2MOV (X0, YO-1.3+HH)
CALL JFONT(1)
CALL JTEXH (N, ITICM)
c
C DRAW X TICK MARKS
c

DO 50 K = 1,TIC

TICK = ALEN«(FLOAT(K)/TIC)
CALL J2MOV (TICK+XO, YO)
CALL J2DRW (TICK+X0, Y0+2.0)

LABEL X TICK MARKS

OO0

TICM = TICM + (CAMAX-AMIN)/TIC)
JTICM = INT (TICM)
CALL CMOVE (JTICM, N, ITICM)
CALL J2MOV (TICK+X0, YD-1.3«HH)
CALL JTEXH (N, ITICM)

50 CONTINUE

GO TO 200
c
C DRAW Y AXIS
c

100 CALL J2DRW (X0, ALEN+YD)

37

BIT BUCKET

OO0

OO0

OO0

LABEL Y ORIGIN

CALL CMOVE (JTICM, N, ITICM)

RN = REAL (N)

CALL J2MOV (XO-HW=(RN+3.)/2., YO
CALL JTEXH (N, ITICM)

DRAW Y TICK MARKS

DO 150 K = 1,TIC
TICK = ALEN=(FLOATC(K)Y/TIC)

LABEL Y TICK MARKS

150
200

TICM = TICM + (C(AMAX-AMIN)/TIC)
JTICM = INT (TICM)

CALL Ja2MaVv (x0, TICK+YD)

CALL J2DRW (XD+HW, TICK+YD)
CALL CMOVE ¢JTICM, N, ITICM)

RN = REAL (N)

CALL J2MOV (XO-HWe(RN+3.>/2., TICK+YD)

CALL JTEXH (N, ITICM)
CONTINUE

RETURN

END

38

BIT BUCKET

FTN4X,L
SUBR
c
C LOGRATHM
c
C IaxIs -
C PMIN -
C PMAX -
C TIC -
C LUG -
C HW -
C HH -
c
C SET AXIS
c
DIME
INTE
MIN
c
IFCI
IFCI
c
C DEFINE O
c
X0=1
Y0=1
IEXP
CALL
IFCI
c
C DRAW X A
c
CALL
c
C LABEL X
c
CALL
RN =
CALL
CALL
CALL
CALL
CALL
CALL
c
C DRAW X T
c
D020
TICK
CALL
CALL
c
c
c

IEXP

Computer

Museum

OUTINE LOGAXCIAXIS,PMIN,PMAX,TIC,LUG,HW,HH)
ETIC AXIS DRAWING ROUTINE

1=X AXIS , 2=Y AXIS

POWER TO BASE 10 OF MINIMUM VALUE OF AXIS
POWER TO BASE 10 OF MAXIMUM VALUE OF AXIS
NUMBER OF TICK MARKS ALONG AXIS

LOGICAL UNIT NUMBER FOR GRAPHICS OUTPUT
CHARACTER CELL WIDTH

CHARACTER CELL HEIGHT

LENGTH IN WORLD COORDINATE SYSTEM (WCS)

NSION IPMINC3), IIEXPC3)
GER MIN
= [NT (PMIN)

AXIS.EQ.1)ALEN=114,
AXIS.EQ.2)ALEN=70.

RIGIN

9.

0.

=MIN

Ja2mgv (¢x0,Y0>
AXIS.EQ.2)GOTO 25

XIS
J2DRW C(ALEN+X0,Y0)

ORIGIN

CMOVE CIEXP, N, IIEXP)

REAL (N)

J2MOV (XO-RN#HW/2., YO-1.8#HH)
JTEXH (2, 2H10)

J2MOV (X0-C(RN-2.)#HW/2., YO-1.3#HH)
JCSIZ C.75#HW, .75#HH, 0.)

JTEXH (N, TIEXP)

JCSIZ (HW, HH, 0.)

ICK MARKS

K=1,TIC
=ALEN+(FLOATC(K)/TIC)
J2MOV (TICK+X0,YD)
J2DRW (TICK+X0,Y0+2.0)

LABEL X TICK MARKS

=1EXP+(PMAX-PMIN)/TIC

39

BIT BUCKET

CALL
RN =
CALL
CALL
CALL
CALL
CALL
CALL

CMOVE
REAL

Jamav
JTEXH
Jamov
JCSI12
JTEXH
JCSI1Z

20 CONTINUE

GOTO
c

35

C DRAW Y AXIS

c
25 CALL
c

J2DRW

C LABEL Y ORIGIN

c
CALL
CALL
cALL
CALL
CALL
CALL
cALL

c

Jamov
JTEXH
CMOVE
Jamov
JCS1Z
JTEXH
JCSIZ

CIEXP, N,

N)
(TICK+X0-RN#HW/2.,

(2, 2H10)

(TICK+X0-(RN-2.)+HW/2.,

C.75#HW,

I1IEXP)

.75+HH,

(N, TIEXP)

(HW, HH,

(X0,ALEN+

(X0-(4.+HW),

(2,2H10)
(MIN, N,

0.)

YO

IPMIN)

(X0-(3.+HW, YO

(.75+HW,

. 75#HH,

(N, IPMIN)

(HW, HH,

C DRAW Y TICK MARKS

c
D030

K=1,

TIC

0.)

TICK=ALEN#(FLOAT(K)/TIC)

c

C LABEL Y TICK MARKS

c
IEXP
CALL
CALL
CALL
CALL
cAaLL
cALL
CALL
CALL
CALL

0.)

YO-0.5#HH)

0.)

= IEXP + (PMAX-PMIN)/TIC

Jamav
J2DRW
Jamaov
JTEXH
CMOVE
Jamov
JCSI1Z
JTEXH
JCS1Z

30 CONTINUE
35 RETURN

END

(X0, TICK+

Ydd

(X0+2.5,TICK+YD)

(X0-(4.+HW,

(2, 2H10)
CIEXP, N,

(X0-(3.+#HW,

(.75#HW,

I1IEXP)

.75+HH,

(N, IIEXP)

(HW, HH,

0.)

TICK+Y0)

0.)

40

Y0-1.8#HH)

Y0-1.3#HH)

TICK+Y0-0.5#HH)

BIT BUCKET

FTN4X,L

c

20

SUBROUTINE CMOVE (SOURC, N, DEST)

INTEGER ISOURC(3), DEST(3), CHAR, BLANK,
INTEGER SOURC
DATA BLANK/2H /

ENCODE (6, 5, ISOURC) SOURC
FORMAT (16>
N=20

po 10 J = 0,5
CALL MPUTC (BLANK, J, DEST)
CONTINUE

DO 20 I = 0, S

CHAR = MGETC (I, ISOURC)

IF (CHAR.EQ.BLANK) GO TO 20
CALL MPUTC (CHAR, N, DEST)
N =N+ 1

CONTINUE

RETURN
END

4

N

OPERATING SYSTEMS

PROGRAM TO PROGRAM DATA PASSING USING FIFO QUEUES IN SSGA

Matt Betts/Fisher Body Division
General Motors Corp.

A servo control application currently in development requires that one program (hereafter called the producer) should maintain
a number of pre-calculated sets of data available for another program (hereafter called the consumer). The consumer program
will operate in real time and be interrupt driven. The producer program will operate in background using a complicated
algorithm to generate the sets of values. The problem is how to allow the two programs to run asynchronously while passing
sets of data from the producer program to the consumer program. The producer program must stay sufficiently ahead of the
consumer program to insure that at least one set of values be available at all times. The best solution is to pass the data through
some form of First In First Out (FIFO) queue. Three alternatives were examined: using Class I/0, using System Common, and
using Sub System Global Area.

FIFO USING CLASS /O

There are several drawbacks associated with using class /O for this application. First is that there has to be a mechanism for
passing the class number from the program that allocated it to all other programs using that class. This requires either a
Father/Son relationship or the use of a location in system common. Each of these alternatives has its own restrictions which may
not be desirable. Second, there is no mechanism to limit the number of entries the producer may have waiting in the class
queue. Either the producer runs until SAM is full or the consumer must tell the producer (using system common or another
class) when it consumes an entry, thereby allowing the producer to monitor queue size. Finally, there is no way to clear the class
gueue of unwanted entries except by removing them one by one. These drawbacks make the class /O approach undesirable.

FIFO IN SYSTEM COMMON

Subroutines can easily be written to implement FIFO queues in system common. The only problem with this approach is that
any other program that uses system common must know the location and size of the queue area. This becomes difficult in
multiuser development systems; also, if the queue size is changed all other programs using system common may have to be
edited, recompiled and reloaded. These problems made the system common approach undesirable.

FIFO In SSGA

Placing the queue area in Sub System Global Area (SSGA) effectively eliminates the drawbacks of both the class /O method
and the system common method. Space for all queues and their associated pointers is reserved at system generation time. In
order for a program to access SSGA, it must have been loaded with SSGA included (using the loadr OP,SS command) and
know the entry point for the data desired. This makes the queues relatively inaccessible to programs not specifically using
them.

42

OPERATING SYSTEMS

IMPLEMENTATION OF FIFO QUEUES IN SSGA

A short piece of assembler code was written to define the queue area. The queues were laid out as a linked list. This was done
to allow changes to be made to the queue lay out without requiring software changes. Each queue area has the following: a
constant which is the size of the queue in words, a put pointer variable, a get pointer variable and a space for the queue. A
dummy entry with zero as the size parameter after the last queue signifies the end of the queue. The following is an example
queue layout:

ASMB,R,L,C
NAM QQSSG,30 QUEUE LIBRARY «811121.1118>
ENT QQGSSG
* STARTING ADRESS OF QUEUE AREA
QQSSG DEF #QQS1
*
* QUEUE »# 1
#QQS1 DEC 300 SIZE
#QQP1 NOP PUT POINTER
#Q0G1 NOP GET POINTER
#30Q1 BSS 300 QUEUE
*
* QUEUE # 2
#QQS2 DEC 100 SIZE
#QGP2 NOP PUT POINTER
#QQ0G2 NOP GET POINTER
#Q0Q@2 BSS 100 QUEUE
*
* QUEUE »# 3
#Q0S3 DEC 50 SIZE
#QQP3 NOP PUT POINTER
#QGG3 NOP GET POINTER
#0QQ3 BSS 50 QUEUE
*
* QUEUE » 4
#Q0S4 DEC 0 END MARK
*
* END
END

The above routine was included in the system generation. It reserved space for the queues, set up the queue parameters, and
provided the entry point QQSSG.

Since Fortran cannot use entry points directly, an assembly language subroutine QQADR was written to provide the address of
the queue based on the queue number. This routine was called by the Fortran subroutine QQPAR to provide the parameters
required for queue manipulation. The routines QQADR and QQPAR follow.

ASMB,R,L,C
NAM QQADR,7 QUEUE LIBRARY «811121.1118>
ENT QQGADR
EXT QQSSG,.ENTR
A EQU 0
B EQU 1
QQNO BSS 1 .ENTR PARAMETER DEST (QUEUE #)
QQADR NOP RETURN ADDRESS STORED HERE AS USUAL
JSB .ENTR GET NUMBER OF DESIRED QUEUE
DEF QQNO
*
LDA QQSSG GET ADDRESS OF FIRST QUEUE SIZE
STA CURAD SAVE IT IN CURRENT ADDRESS

43

OPERATING SYSTEMS

LOOP

NEXT

ERRET

CURAD

OOOO0

00

(@ Ne]

LDA QaQNo,I IS QUEUE NUMBER

S2A,RSS =02

JMP ERRET YES - ERROR

SSA < 07

JMP ERRET YES - ERROR

CMA, INA NEGATE QUEUE NUMBER

ISZ2 A AT DESIRED QUEUE °

JMP NEXT NO - LOOP

LDA CURAD YES - AT QUEUE - POINT AT QUEUE ITSELF
ADA =B3

JMP QQADR, I RETURN

LDB CURAD,I GET SIZE OF THIS QUEUE

ADB CURAD MOVE CURRENT ADDRESS TO NEXT QUEUE SIZE
ADB =B3

STB CURAD SAVE CURRENT ADDRESS

LDB CURAD,I IF NEXT QUEUE HAS ZERO LENGTH
SZB THEN IT IS THE END MARKER

JMP LOOP OTHERWISE - TRY AGAIN

CLA SET ERROR RETURN

JMP QQADR, I RETURN

BSS 1

END

SUBROUTINE TO

GET QUEUE PARAMETERS FROM SSG (QUEUE NUMBER,
QUEUE ADDRESS, PUT POINTER ADDRESS, GET POINTER
ADDRESS, QUEUE SIZE ADDRESS, ERROR FLAG)
SUBROUTINE QGPAR (QUENDO, QUEAD, PUTAD, GETAD, SIZAD, ERROR)
#+ ,QUEUE LIBRARY <811121.1118>

IMPLICIT INTEGER (A - 2)

LOGICAL ERROR

CLEAR ERROR FLAG
ERROR = .FALSE.

GET QUEUE ADDRESS
QUEAD = QGADR (QUEND)
IFCERROR)

IFC.NOT. (QUEAD .EQ. 0)) GO TO 10
SET ERROR FLAG
ERROR = .TRUE.

GO TO 20

ELSE
CONTINUE

CALCULATE OTHER ADDRESSES
GETAD = QUEAD - 1
PUTAD = GETAD - 1
SIZ2AD = PUTAD - 1

44

OPERATING SYSTEMS

c

c FI

20 CONTINUE

c RETURN
RETURN
END

QQADR returns zero as the queue address if the queue doesn't exist. If this occurs, QQPAR sets the error flag.

Knowing the addresses of the queue and its parameters aliow queue manipulating subroutines to be written using the HP
supplied routines IPUT and IGET. These routines read from and write to address parameters.

QUEUE MANIPULATION SUBROUTINES

The queue manipulation routines were written to allow the queues to have width as well as length. The following is an illustration
of the queue concept.

050 |-« QUEUE SIZE

003 |= PUT POINTER

001 GET POINTER

A

- WIDTH —

(—‘START OF QUEUE

SOURCE 0F| NEXT GET -

LASTIENTR PUT

]
DESTINATION FOR NEXT PUT - J

[€—T O Zmr—»f

END OF QUEUE —)

NOTE:

1. WIDTH = WIDTH IN WORDS

2. A FULL QUEUE WILL HAVE LENGTH — 1 ENTRIES
3. 2 < LENGTH < SIZE

4. 1 < WIDTH < (SIZE/2)

45

OPERATING SYSTEMS

This arrangement allows real variables, groups of variables, or strings to be passed with one call. The length of a queue can be
determined for a given width in the following manner.

CALL QQPAR (QUENO, QUEAD, PUTAD, GETAD, SIZAD, ERROR)
LENTH = IGET (SIZAD) / WIDTH

Al subsequent queue manipulations must use the same length and width. By specifying the width and calculating the length,
the size of the queue area can be altered without need of recompilation; therefore, programs will make maximal use of the
queue area available.

Listings of the queue manipulating routines written to date along with appropriate comments are following.

Clear the specified queue. The Error flag is set if the queue doesn’t exist.

c SUBROUTINE CLEAR QUEUVE (QUEUE NUMBER, ERROR)
c 2B E R ERE S EE S E RS ER S EE S EEE EE N EEEEEEEEEEEEEEEEIEIEEREERE
SUBROUTINE QQCLR (QUENO, ERROR)
+ ,QUEUE LIBRARY <811121.1118>
IMPLICIT INTEGER (A - 20
LOGICAL ERROR

c
c GET QUEUE PARAMETERS
CALL QQPAR (QUENO, QUEAD, PUTAD, GETAD, SIZ2AD, ERROR)
c
c IF(NOT ERROR)
IFCERROR)Y GO TO 10
c
c PUT POINTER <== GET POINTER
CALL IPUT(PUTAD,0)
CALL IPUT(GETAD,0)
c
c FI
10 CONTINUE
c
c RETURN
RETURN
END
Cs

46

OPERATING SYSTEMS

Is the specified queue empty? The Error flag is set if the queue doesn't exist. The Empty flag is set if the queue is empty.

c SUBROUTINE CHECK FOR EMPTY QUEUE (QUEUE NUMBER, ERROR, EMPTY)
C it 2 R EEESEREES RS R R RS RS RER R RERRERRERRREREERREREREERERRESSER]
SUBROUTINE QGEMT (QUENO, ERROR, EMPTY)
+,QUEUE LIBRARY «811121.1118>
IMPLICIT INTEGER (A - 2)
LOGICAL ERROR, EMPTY

c
c GET QUEUE PARAMETERS

CALL QQPAR (QUENO, QUEAD, PUTAD, GETAD, SIZAD, ERROR)
c
c IFCNOT ERROR)

IFCERROR) GO TO 30
c
c IFCPUT POINTER == GET POINTER)

IFC.NOT. CIGET (PUTAD) .EQ. IGET (GETAD)>)) GO TO 10
c
c EMPTY <== TRUE
EMPTY = .TRUE.
c
GO TO 20

c ELSE
c
c EMPTY <== FALSE
10 EMPTY = _FALSE.
c
c FI
20 CONTINUE
c
c FI
30 CONTINUE
c
c RETURN

RETURN

END

47

OPERATING SYSTEMS

Is the specified queue full? The Error flag is set if the queue doesn't exist. The Full flag is set if the queue is full.

c SUBROUTINE CHECK FOR FULL QUEUE (QUEUE NUMBER, ERROR, LENGTH,
c s=s=ss==szx=z=z=zzr=s====s==xz==x=z= FULL)
C P E T I S S S S S EESREES=SEESEEISE=E
SUBROUTINE QQFUL (QUENO, ERROR, LENGTH, FULL)
+ ,QUEUE LIBRARY <811121.1118>
IMPLICIT INTEGER (A - 2)
LOGICAL ERROR, FULL

c
c GET QUEUE PARAMETERS

CALL QGGQPAR (QUENO, QUEAD, PUTAD, GETAD, SIZAD, ERROR)
c
c IF(NOT ERROR)

IFCERROR) GO TO 30
c
c IFCCPUT POINTER MOD LENGTH) + 1 == GET POINTER)

IFC.NOT. ((MOD (IGET (PUTAD) + 1,LENGTH)) .EQ.
* IGET (GETAD)>)>) GO TO 10
c
c FULL <== TRUE
FULL = .TRUE.
c
GO TO 20

c ELSE
c
c FULL <== FALSE
10 FULL = .FALSE.
c
c FI
20 CONTINUE
c
c F1
30 CONTINUE
c
c RETURN

RETURN

END

48

OPERATING SYSTEMS

How many entries are there currently in the specified queue? The Error flag is set if the queue doesn't exist.

c SUBROUTINE POPULATION IN QUEUE (QUEUE NUMBER, ERROR, LENGTH,
C Z=xESTEE=SES=ES=S=EISEE====®E==®E=== POPULATION)
C s====s==z==z=z=zzE=zEz==s=z===z=z=z===
SUBROUTINE QQPOP (QUENO, ERROR, LENGTH, POP)
+ ,QUEUE LIBRARY ¢811121.1118>
IMPLICIT INTEGER (A - 2)
LOGICAL ERROR
c
c GET QUEUE PARAMETERS
CALL QGQPAR (QUENO, QUEAD, PUTAD, GETAD, SIZAD, ERROR)
c
c IF(NOT ERROR)
[FCERROR) GO TO 30
c
c IF (PUT POINTER >= GET POINTER)
IFC.NOT. (IGET (PUTAD) .GE. IGET (GETAD))) GO TO 10
c
c POPULATION <== PUT POINTER - GET POINTER
POP = IGET (PUTAD) - IGET (GETAD)
c
GO TO 20
c ELSE
c
c POPULATION <== PUT POINTER - GET POINTER + LENGTH
10 POP = IGET (PUTAD) - IGET (GETAD) + LENGTH
c
c FI
20 CONTINUE
c
c FI
30 CONTINUE
c
c RETURN
RETURN
END

49

OPERATING SYSTEMS

Get a point (array) from the specified queue. The Error flag is set if the queue doesn’t exist or the queue is empty. WIDT2 is the
width of the array receiving the data. WIDTH or WIDT2 words will be transferred, whichever is less.

C SUBROUTINE GET A PDINT FROM QUEUE (QUEUE NUMBER, ERROR, LENGTH,
c semnszzszzazzsasszzzzzzazxzxzzzxxx W[DTH, ARRAY, WIDT2)
C EREREEEREREEEREEEAAERSEEREREEEREEEREREECRER

SUBROUTINE QQGET (QUENO, ERROR, LENGTH, WIDTH, ARRAY, WIDT2)

+,QUEVUE LIBRARY «811121.1118>

IMPLICIT INTEGER (A - 2)
LOGICAL ERROR, EMPTY
DIMENSION ARRAY (1)

c
c GET QUEUE PARAMETERS
CALL GGPAR (QUENDO, GQUEAD, PUTAD, GETAD, SIZAD, ERROR)
c
C IF(NOT ERROR)
IFCERRORY GO TO 40
C
c IFCEMPYT QUEUE (QUEUE NUMBER, ERROR, EMPTY))
CALL GGEMT (QUENO, ERROR, EMPTY)
IFC.NOT. EMPTY) GO TO 10
c
c ERROR <== TRUE
ERROR = .TRUE.
c
GO TO 30
c ELSE
C
c ERROR <== FALSE
10 ERROR = .FALSE.
c LOOPSIZ <== MIN (WIDTH, WIDT2)
LSIZ = MINO (WIDTH, WIDT2)
c
C DD C1 = 1: I «= LOOPSIZ: I =1 + 1)
DO 20 I = 1, LSIZ, 1
c
c ARRAY (I) <== QUEUE (GET POINTER, 1)
ARRAY (I) = IGET (QUEAD + IGET (GETAD) =
* WIDTH + (I - 1))
c
20 CONTINUE
c ENDDO
C
c GET POINTER <== (GET POINTER MOD LENGTH) + 1
CALL IPUT (GETAD, (MOD (IGET C(GETAD) + 1, LENGTH)))
C
c FI
30 CONTINUE
C
c FI
40 CONTINUE
C
c RETURN
RETURN
END

50

OPERATING SYSTEMS

Write a point (array) to the specified queue. The Error flag is set if the queue doesn’t exist or the queue is full. WIDTH and WIDT2

are the same as in get a point.

c
c
c

(g N o]

(g N o]

(g X/

(g Xe] (g X/ O0O-=2000 (9]

OOONO

OCOOHLOOWOO

SUBROUTINE PUT A POINT TO QUEUE (QUEUE NUMBER, ERROR, LENGTH,
I EEEEEEIEECEEEEECECEEERSENSERR NIDTH, ARRAY, WIDT2)

SUBROUTINE QGPUT (QUENO, ERROR, LENGTH, WIDTH, ARRAY, WIDT2)
+ ,QUEUE LIBRARY «¢811121.1118>

IMPLICIT INTEGER (A - 2)

LOGICAL ERROR, FULL

DIMENSION ARRAY (1)

GET QUEUE PARAMETERS
CALL GGQPAR (QUENDO, QUEAD, PUTAD, GETAD, SIZAD, ERROR)

IFC(NOT ERROR)
IFCERRORY GO TO 40

IFCFULL QUEUE (QUEUE NUMBER, ERROR, LENGTH, FULL)Y)

CALL QQFUL (QUENO, ERROR, LENGTH, FULL)
IFC.NOT. FULLY GO TO 10

ERROR «<== TRUE
ERROR = .TRUE.

GO TO 30

ELSE

FI

FI

ERROR «== FALSE
ERROR = .FALSE.

LOOPSIZ <== MIN (WIDTH, WIDT2)
LSIZ = MINO (WIDTH, WIDT2)

DO (I = 1: I <= LOOPSIZ: T =1 + 1)
DO 201 = 1, LSIZ, 1

QUEUE (PUT POINTER, I) «<== ARRAY (I)
CALL IPUT (QUEAD + IGET (PUTAD) =
WIDTH + (I - 1), ARRAY(I))

CONTINUE
ENDDO

PUT POINTER «<== (PUT POINTER MOD LENGTH) + 1
CALL IPUT (PUTAD,(MOD C(IGET (PUTAD) + 1, LENGTH)))

CONTINUE

CONTINUE

RETURN

RETURN

END

51

OPERATING SYSTEMS

OTHER CONSIDERATIONS

If more than one program will be using the Get subroutine on the same queue, care should be taken to ensure that the
subroutine calls do not overlap. Similar care should be taken when using the Put and Clear subroutines. Overlapping calls
using the same pointer will cause improper pointer operation. This problem can be prevented by using Resource Numbers.

52

INSTRUMENTATION

THE FUNDAMENTALS OF HP-IB ADDRESSING

Neal Kuhn/DSD,Applications Development

HP-IB is a powerful interfacing concept that allows multiple instruments to be connected to the same bus. This concept helps to
economize the system cost with respect to cabling, interface hardware, and user software effort. Programming devices with
HP-IB is straightforward; however, if full utility is desired a person implementing an HP-IB system should understand how HP-IB
addresses are created and used. The purpose of this article is to describe the HP-IB addressing scheme, and discuss how it is
used in an HP 1000 Computer System.

COMPUTER
é= 1
| HP-IB
HP-IB
oRveR | /0 CARD———__. =
DEVICE DEVICE DEVICE
#1 #2 #3
Figure 2

Figure 1 illustrates the typical connection pattern for a group of HP-IB instruments. The bus itself is a multidrop arrangement in
which each device has its own address. The address is set with switches which are usually located on the back of the
instrument, or with jumpers which are usually on the circuit board associated with the instrument's I/O. Each manufacturer
installs the switches or jumpers in a different place, and labeling is not always clear. Therefore, care should be taken to
ascertain which switch is the most significant bit, and which position is “1” or “0". Application Note Series 401 contains
information regarding the setting of the HP-!B address switches for many of the HP-IB instruments and peripherals. A typical
HP-IB address grouping is shown in Figure 2.

HP-IB DIGITAL 170

SR

Figure 1

53

INSTRUMENTATION

Five address bits are used to obtain the binary pattern for up to 32 device addresses, but only 30 different settings can be used
for instruments. One address is withheld by the controller for use as its own address, since the I/O card itself is an HP-IB device.
For the HP 1000, this address is address 0. HP-IB address 31 (37B) is defined by the HP-IB for the special purpose of telling
everyone to stop talking (untalk) or stop listening (unlisten). All devices respond to the untalk and unlisten commands
regardless of their addresses. Addresses 1 to 30 (36B) may be arbitrarily assigned to your device.

When the HP-IB's ATN (attention) management line is asserted, information is sent out from the controller over the bus data
lines. This information tells the devices which HP-IB command to perform, or which device should talk and which devices
should listen during a transfer of data. A coding scheme is established for HP-IB where a parity bit and two data bits are
appended to the five bit address to form an eight bit “command’ byte. The parity bit is not usually used. A device looks for its
address in the command byte, and also looks at the two extra bits to determine what the command was. The choices for these
two bits are:

WORD MEANING

00 XXXXX This is a bus “universal” command and xxxxx is the command to perform. The universal commands
are used to clear devices, trigger them, and to set up polling sequences for service requests.

01 XXXXX This is a “listen” command, and device xxxxx is to listen to the bus for data.
10 XXXXX This is a “talk” command, and device xxxxx is to send data onto the bus.
11 XXXXX This is “secondary” command, and xxxxx is a device dependent function code for the currently

addressed device.

When the command bits are combined with the device address or function code, a seven bit ASCII character is formed. Note
for universal commands that the characters are non-printing. Table 1 illustrates the ASCII characters formed for talker and
listener combinations of device address and command bits.

For an example, if the ASCII command string “_?5L" is sent onto the bus from the controller, everyone would untalk (_), everyone
would unlisten (?), the device set to address 5 is told to listen for data (5), and the device set to address 12 is told to talk (L).
After the ATN management line is de-asserted, device 12 will begin talking, device 5 will listen, and everyone else will ignore the
transaction. Note that device addresses 5 and 12 were arbitrarily selected.

According to the [EEE-488 standard, a device that is made a listener will continue to listen until it is made a talker, or the unlisten
command is sent.* Assigning a new listener will not unlisten the previous one. This is the technique used by HP-IB to assign
multiple listeners. The active talker will change when it is made a listener, or another device is made a talker, or the untalk
command is sent. To assure that the proper devices are talking and listening, the convention usually adopted is to always send
the untalk and unlisten commands first, and then set up the appropriate talkers and listeners.

Communication with devices over HP-IB can be accomplished in two different ways. One method is referred to as “automatic
addressing”, and the other is referred to as “direct addressing”. Automatic addressing is a simple and straightforward
technique which can be used for a majority (if not all) of HP-IB transactions.

Automatic addressing can utilize the standard READ,WRITE/PRINT contexts and formatting procedures. For READ statements,
it is assumed that the HP 1000 is the listener, and the addressed device is the talker. For WRITE and PRINT statements, the HP
1000 is the talker and the addressed device is the listener.

*There are other techniques to unlisten or untalk an instrument (such as interface clear), but they are unaesthetic, and are used
as bail out measures. Also, the untalk for my listen address is optional, but normally used. The only time that this option is not
used is with terminals where the keyboard (Talker) and the display (Listener) are both active.

54

INSTRUMENTATION

Table 1. ASC!l Character Equivalents for Talker and Listener Values

COMMAND SWITCH OCTAL VALUE LISTENER TALKER
BITS SETTINGS OF SWITCHES (XX=01) (XX=10)
X X 0000 1 1 ! A
X X 00010 2 " B
X X 00011 3 # C
X X 00100 4 $ D
X X 0010 1 5 % E
X X 00110 6 & F
X X 00111 7 ' G
X X 01000 10 (H
X X 0100 1 11) |
X X 01010 12 : J
X X 0101 1 13 + K
X X 01100 14 L
X X 01101 15 M
X X 01110 16 N
X X 01111 17 / 0
X X 10000 20 0 P
X X 10001 21 1 Q
X X 10010 22 2 R
X X 10011 23 3 S
X X 10100 24 4 T
X X 10101 25 5 U
X X 10110 26 6 v
X X 10111 27 7 w
X X 11000 30 8 X
X X 11001 31 9 Y
X X 11010 32 Z
X X 11011 33 (
X X 11100 34 < N
X X 11101 35 =)
X X 11110 36 > A

NOTE: The two shaded values have special uses. Address “0"” is used by the computer. Address 37B is used by
HP-IB to UNTALK or UNLISTEN all devices.

55

INSTRUMENTATION

The Device Reference Table (DRT) structure in the HP 1000 lends itself well to HP-IB programming. When a READ, WRITE, or
PRINT statement is executed, the LU specified is converted into the respective EQT number of the HP-IB and a subchannel
number. The subchannel number is the HP-IB device’s address (1 to 36B). The HP-IB driver “automatically” converts the
subchannel number into the proper HP-IB talker or listener code and performs the following:

For a READ statement:

ATN is asserted by the HP 1000

UNTALK () is sent

UNLISTEN (?) is sent

The TALKER character for the specified LU is sent (see table 1)
ATN is de-asserted

The device talks and the HP 1000 listens

o0 A~ WN =

For a WRITE or PRINT statement:

ATN is asserted by the HP 1000

UNTALK (.) is sent

UNLISTEN (?) is sent

The LISTEN character for the specified LU is sent
ATN is de-asserted

The HP 1000 talks and device listens

o 0~ o=

The following statement illustrates an example of how automatic addressing is used. If a device requires the characters “T3" to
initiate a measurement, the statement:

WRITE €28,101)
101 FORMAT ("T3")

could be used if the device was assigned to LU 28. Unformatted (free field format) and binary readings can also be used.

There are times when it is desirable to continue a READ or WRITE function without altering talk or listen addresses. This can be
accomplished by using an LU number that points to the bus itself (subchannel 0). Since talking or listening to subchannel 0
would mean talking to itself, the system assumes that you wish to perform the /O transaction without disturbing prior
addressing. The I/O task is performed without any command information (asserting ATN). This technique is useful for some
buffered devices when a portion of the buffer is sent each time without re-addressing. Also, this technique can speed
processing when the talkers and listeners do not need to be changed.

The direct addressing technique is a faster and more efficient method than auto-addressing, but places the burden of bus
control on the user program. Under direct addressing, the user program provides two bufters to the HP-IB driver. One buffer
contains the command information which will be sent over the bus while ATN is asserted. This is used to assign the appropriate
talkers and listeners, or to send universal and secondary command characters. The other buffer either contains the data to be
sent out, or is the place where incoming data will be stored. Remember to specify the computer's talk or listen address with
direct addressing if the computer will participate in the data transfer.

There are two ways to directly address devices over the bus. HP-IB library routines CMDR and CMDW (command read and
write) or EXEC calls can be used in FORTRAN. In BASIC, CMDR and CMDW must be used, since EXEC calls cannot be used.

56

INSTRUMENTATION

The HP-IB Users Guide (HP part number 53310-30064) explains how to use CMDR and CMDW, but two vital points are often
overlooked. First, CMDR and CMDW were intended for use with BASIC, and expect the command and data buffers to contain
character strings. In FORTRAN, the format of these buffers must resemble a string. This means that the first word of the buffer
must contain the number of characters in the string. After this first word, each additional word will contain two characters. The
second point to remember is that direct addressing requires that the LU of the bus be used. The HP-IB driver checks to see it
the subchannel specified is 0. if it isn't, an error occurs, the task is rejected, and the program is terminated.

The library commands CMDW and CMDR reformat the buffers and make calls to EXEC. If the language used allows calls to
EXEC, they can be used directly. The format for the direct addressing EXEC call is:

CALL EXECCICODE,ICNWD, IDBFR,IDLEN,ICBFR,ICLEN)
where:

ICODE = Function Code
1 = READ
2 = WRITE

ICNWD = Control word containing the bus LU and an indicator for type of transfer

10000B+LU = ASCI! data record with an end of record indicator.
10100B+LU = Fixed length binary record with an end of record indicator.
12000B+LU = ASCII data record without an end of record indicator.
121008 +LU

Fixed length binary record without an end of record indicator.
IDBFR = Name of data buffer

IDLEN = Length of data buffer in either characters (bytes) or words.

n = words
—m = characters
0 = no data

ICBFR = Name of buffer containing the HP-IB commands

ICLEN = Length of command buffer

n = words
—-m = characters
0 = no command buffer used

Note in the above EXEC call that the command and data buffers are optional parameters. If the EXEC call is to perform HP-IB
commands only, no data buffer is used. The EXEC call expects these parameters to be specified, so remember to supply
arguments for both the buffer name and length (set the values to 0's). If the talk and listen assignments are not altered, the
command buffer is not used. It is either set to 0's, or can be omitted. If it is omitted, be sure to turn off bit twelve in the above
control words (subtract 10000B from each of the commands).

57

INSTRUMENTATION

Special bus related commands can also be sent to the HP-IB bus to clear devices, to trigger them, and to regulate polling for
service requests. These commands, which are referred to as "universal” commands, are shown in table 2. They can be sentin
command buffers under direct addressing, or with library routines. The HP-IB Users Guide explains the library calls in detail,
and gives examples of their use.

The preceeding discussion covered addressing and talking to HP-IB devices. Exira processing power and efficiency can be
obtained by utilizing a full understanding of the addressing scheme. Remember, it is important to know your address when
getting on the bus.

Table 2. HP-IB Universal Commands

COMMAND ACRONYM OCTAL CODE FUNCTION

Local Lockout LLO 21 Causes all responding devices to disable
their front panel local-reset buttons. Devices
need not be addressed.

Device Clear DCL 24 Causes all responding devices to return to a
pre-determined state. Devices need not be
addressed.

Selected Device SDC 04 Causes the current addressed devices to re-

Clear set to a predetermined state.

Group Execute GET 10 Causes all current addressed devices to

Trigger initiate a preprogrammed action.

Go To Local GTL 01 Causes the currently addressed devices to

return to local control.

Serial Poll SPE 30 Establishes serial poll mode, such that all co-
Enable operating devices, when addressed, will pro-
vide status information. An ensuing read will
take a single 8-bit byte of status.

Parallel Poll PPC 05 Assigns an HP-IB DIO line to a cooperating

Configuration device for the purpose of responding to a
parallel poll.

Parallel Poll PPU 25 Resets all parallel poll devices to a prede-

Unconfiguration termined condition.

Take Control TCT 11 This command is used to pass active control-

ler function to another device on the bus.
This function may NOT be used under the
constructs of the current driver.

The remaining unspecified codes are reserved for future use and should not be used indiscriminately in any control
buffer. This will avoid future difficulties.

58

BULLETINS

THE MOST POWERFUL RTE EVER

Jim Williams/DSD Product Marketing

On November 1, 1981, Data Systems Division made available for order RTE-6/VM, a major enhancement to the high end
Real-Time Executing Operating System on the HP 1000. This new operating system contains many enhancements to existing
features of RTE-IVB, and also includes three major new capabilities, which make the HP 1000 the most powerful 16-bit
minicomputer available by far. These capabilities are:

1. The ability to handle very large data areas through a Virtual Memory scheme;
2. Shared data areas of up to 1.9 megabytes in size;

3. The ability to handle large code with minimal or no changes to the source program, and to have up to 1.9 megabytes of
code in main memory.

The Virtual Memory for data system allows the user to access up to 128 megabytes of data by simply dimensioning the arrays
normally and adding one control statement to the source program, the $EMA statement. When the user loads the program, he
or she may choose between utilizing the VM system or the EMA memory resident subset of VM by issuing one command to the
loader. SIMPLE! After the program is loaded, access to the data is totaily transparent to the user, whether the data is in memory
or on the disc. From the user's point of view, the data is accessed as if it were local data.

Typical applications requiring access to large data areas are CAD simulation, graphics, linear programming, and statistical and
structural analysis. Applications dealing with large matrices, such as statistical and structural analysis, may also take
advantage of the Vector Instruction Set, which works in conjunction with the Virtual Memory System to give a powerful large
matrix manipulation tool. No other 16-bit computer has this extensive data handling capability.

The second new major feature refers to the sharing of large areas of data in memory among up to 64 programs. Upon
generation or system boot-up, up to 8 memory partitions of any legal size may be specified as shareable. The operating system
will manage the use of these partitions so that, if the user desires, a partition may be locked and remain in use for sharing data
even when no active program is using the data. Also, when the partition is not being used to share data, it is used by the system
just as any other partition of its type.

This capability is extremely popular in the process monitor and control environment. The existence of a large process table in
main memory containing data that describes the process, with several programs accessing the data to monitor and analyze the
process, while other programs are updating real-time displays describing the process, is essential to many applications. The
HP 1000 now has the most powerful shared data scheme implemented on 16-bit minicomputers.

The last of the three major features of RTE-6/VM tisted above is the capability to efficiently handle large programs. We call this
capability Extended Code Space (ECS). There are two distinct advantages to this scheme over other implementations of
solutions to the large code problem. The first advantage is the implementation of code segmentation with minimal or no
changes to the source of the program. This allows the programmer to develop complex programs in modular form without
excessive concern for the word size of the target machine. This capability also allows the user to convert programs written for
larger, more expensive computers to the HP 1000, and realize a tremendous price/performance advantage. The normal
problem when transporting a large program to a different machine is facing a programming language conversion prior to facing
a system conversion. This problem is averted by the coordinated introduction of our new, full ANSI standard FORTRAN 77
compiler. This compiler, in combination with ECS make large program conversion to the HP 1000 an advantageous proposition.

The second advantage realized by the implementation of ECS on the HP 1000 is the extremely low overhead incurred by the
operating system when switching control between code segments that are memory resident. This transition between segments,
implemented through normal user subroutine calls, is accomplished by the Operating System and micro coded for speed and
efficiency. Up to 1.9 megabytes of program code may take advantage of this speed by residing in memory, with the remainder
of non-critical code residing on disc.

59

BULLETINS

This capability will allow the HP 1000 to be utilized in applications previously restricted 1o larger, more expensive computers.

There are no less than 22 additional features in RTE-6/VM. | will not attempt to explain each one, but instead categorize them
into four classes, and give examples of features in each category that have been particularly well received.

1. Input/Qutput Extensions
Class I/O Clean-Up
IO Request Cancellation
More peripherals capability (255 EQTs)

2. Extensions to RTE-IVB Resources
More System Available Memory (SAM)
Larger system discs

3. Friendlier on-line quick reference utilities
Faster HELP
User Extendable Help files

4. Performance
With all these new features and functionality, you might think that the performance of the operating system would surely be
degraded — NOT SO! In fact, in most cases the new system outperforms RTE-IVB! The reason is the addition of Operating
System Accelerator Firmware; the microcoding of key areas of RTE-6/VM.

From this discussion of the BIG THREE and the many other features, you can see that this is truly a major revision to our
high-end operating system family.

ORDERING INFORMATION

92084A: $9,000 plus media for first time RTE buyers
Option 001: —$3,600 upgrade discount from RTE-IVB, no services
Option 002: —$6,300 upgrade discount from RTE-IVB if on CSS or SSS.

For out customers with more than 15 systems on support services, a special upgrade path has been defined.

92085A: $6,000 RTE-6/VM Bulk Upgrade License (software only)
92086A: $ 650 RTE-6/VM Upgrade Kit (firmware and manuals)

A customer wishing to upgrade more than 15 systems would purchase one 92085A product and a number of 92086A products
eqgual to the number of CPUs to be upgraded.

Remember, RTE-6/VM is the most powerful Real-Time Operating System for automation, test and control applications.

60

BULLETINS

NEW LANGUAGES EXTEND PROGRAMMING CAPABILITIES ON RTE-6/VM

Linda Haar/DSD Sales Development

To fully complement the introduction of RTE-6/VM, DSD has also announced a variety of new languages. As a result, a larger
array of compilers is offered on RTE-6/VM than any previous HP 1000 operating system.

Leading the way on the RTE-6/VM offering are the new compilers: FORTRAN 77, an enhanced Pascal compiler, and the new
Macro Assembler.

FORTRAN 77
The most significant new product offered with RTE-6/VM is FORTRAN 77.

First of all, FORTRAN 77 is a complete ANSI 77 standard compiler. Nonetheless, it also provides even more flexibility and
compatibility by incorporating the complete MIL-Std-1753 implementation as well as major mainframe extensions. These are all
powerful aids for moving programs over to the HP 1000. In addition, FORTRAN 77 is a superset of the ANSI 66 FORTRAN 4X
compiler. In cases where incompatibilities exist between the ANSI 66 and ANSI 77 standards, FORTRAN 77 provides a
software switch so the user may decide to which standard he will adhere. So, current FORTRAN 4X programs are totally
compatible!

And, even with all these features, FORTRAN 77 running on RTE-6/VM provides no additional overhead above that found on
FORTRAN 4X with RTE-IVB.

Thus, FORTRAN 77 provides a set of programming capabilities over and above that of many ANSI 77 compilers. Together,
RTE-6/VM and FORTRAN 77 provide a winning combination for program development.

PASCAL

RTE-6/VM also supports an enhanced higher performance Pascal compiler. The virtual memory capabilities of RTE-6/VM made
it possible to dramatically improve a common complaint about Pascal; slow compilation. By using VMA/EMA, the new Pascal for
RTE-6/VM achieves twice the compilation speed of Pascal on RTE-IVB. Higher compile speeds translate to increased
throughput for the single user or for several programmers doing compilation on a single system.

MACRO/1000

RTE-6/VM and RTE-XL will both inciude the new Macro Assembler as a standard part of the operating system. A fully-
compatible, greatly-enhanced superset of the RTE-IVB assembler, Macro/1000 exhibits twice the compilation performance of
its predecessor. The enhanced feature set includes file and string manipulation routines, more pseudo-operations, and more
extensive assembly-time conditionals. However, perhaps the greatest enhancement is the full support of macros and macro
libraries. These provide powerful programming capabilities as macro libraries can be built and searched at compilation time in
much the same way as subroutine libraries are built today. This provides a means to reduce redundant code and implement
high level constructs into assembly ievel programs.

FORTRAN 77, the new Pasca! and the new Macro Assembler all support the new record format in RTE-6/VM. This means that

externally referenced names can now be sixteen characters in length removing the restriction of five characters found in our old
compilers.

61

BULLETINS

To round out our new language offerings, we are also introducing Pascal on RTE-XL, providing a powerful structured
programming language on our L-Series microsystems.

We teel the new compilers will strongly complement RTE-6/VM in providing the strongest programming development
capabilities ever found on a 16-bit minicomputer. But those languages do not complete the list. BASIC-D and FORTRAN 4X
(effective revision code 2140 or later) will be supported under RTE-6/VM; and a third party, Corporate Computer Systems
(CCS), offers the C Compiler and a just released COBOL compiler for the new RTE-6/VM systems. An array of languages never
found before on an HP 1000 computer system; all designed to fully meet with any programmer’s needs.

ORDERING INFORMATION

92836A
-001
-003
-004

92833A

-001
-002

92854A

-001

FORTRAN 77 for M,E,F computers operating under RTE-6/VM (must order a media option)
Upgrade discount (from previous version of 92836A for users not on CSS/SSS)

Upgrade discount (from 92834A FORTRAN 4X for users on CSS/SSS as of Novemnber 1, 1981)
Upgrade discount (from 92834A FORTRAN 4X for users not on CSS/SSS)

Pascal/1000 for M/E/F-Series computers with 384k bytes memory operating under RTE-6/VM.
(Must order media option)

Upgrade discount from 92832A a previous version of 92833A for user not on CSS/SSS
Upgrade discount from 92832A for user on CSS/SSS

Pascal/1000 for L-Series computer with at least 128k byte of memory and hard disc operation
under RTE-XL (Must order media option)

Upgrade discount from previous version of 92834A for user not on CSS/SSS

62

Price

$4,500
—1,800
—3,000
-1,000

$4,500

—1,800
—4,500

$1,500

—600

BULLETINS

JOIN AN HP 1000 USER GROUP!

Here are the groups that we know of as of December 1980. (If your group is missing, send the Communicator/1000 editor all of

the appropriate information, and we'll update our list.)

NORTH AMERICAN HP 1000 USER GROUPS

Area

Arizona

Boston

Chicago

Greenville/S. C.

Huntsville/Ala.

Montreal

New Mexico/El Paso

New York/New Jersey

63

User Group Contact

Jim Drehs
7120 E. Cholla
Scottsdale, Arizona 85254

LEXUS
P.O. Box 1000
Norwood, Mass. 02062

David Olson

Computer Systems Consultant
1846 W. Eddy St.

Chicago, lllinois 60657

(312) 525-0519

Henry Lucius i

American Hoechst Corp.
P.O. Box 1400

Greer, South Carolina 29651
(803) 877-8471

John Heamen ED35

George C. Marshall Space Flight Ctr.
Nasa

Marshall Space Flight Ctr., AL. 35812

Erich M. Sisa

Siemens Electric Ltd.

7300 Trans Canada Highway
Pointe Claire, Quebec

H9R 1C7

Guy Gallaway

Dynalectron Corporation
Radar Backscatter Division
P.O. Drawer O

Holloman AFB, NM 88330

Paul Miller

Corp. Computer Systems
675 Line Road
Aberdeen, N.J. 07746
(201) 583-4422

BULLETINS

NORTH AMERICAN HP 1000 USER GROUPS (CONTINUED)

Area User Group Contact
Philadelphia Dr. Barry Perlman
RCA Laboratories
P.O. Box 432

Princeton, N.J. 08540

Pittsburgh Eric Belmont
Alliance Research Ctr.
1562 Beeson St.
Alliance, Ohio 44601
(216) 821-9110 X417

San Diego Jim Metts
Hewlett-Packard Co.
P.O. Box 23333
San Diego, CA 92123

Toronto Nancy Swartz
Grant Hallman Associates
43 Eglinton Av. East
Suite 802
Toronto M4P1A2

Washington/Baltimore Mal Wiseman
Hewlett-Packard Co.
2 Choke Cherry Rd.
Rockville, MD. 20850

General Electric Co. Stu Troop

(GE employees only) Special Purpose Computer Ctr.
General Electric Co.
1285 Boston Ave.
Bridgeport, Conn. 06602

OVERSEAS HP 1000 USER GROUPS

Belgium J. Tiberghien
Vrije Universiteit Brussel
Afdeling Informatie
Pleinlaan 2
1050 Brussel
Belgium
Tel. (02) 6485540

64

BULLETINS

OVERSEAS HP 1000 USERS GROUPS (CONTINUED)

Area

France

Germany

Netherlands

Singapore

Switzerland

United Kingdom

65/66

User Group Contact

Jean-Louis Rigot
Technocatome TA/DE/SET
Cadarache

BP.1

13115 Saint Paul les Durance
France

Tel. (042) 253952

Hermann Keil

Vorwerk + Co Elektrowerke
Abt. TQPS

Rauental 38-40

D-5600 Wuppertal 2

W. Germany

Tel. (0202) 603044

Albert R. Th. van Putten

National Institute of Public Health
Antonie van Leeuwenhoeklaan 9
Postbox 1

3720 BA Bilthoven

The Netherlands

Tel. (030) 742344

W. S. Wong

Varta Private Lid.

P.O. Box 55

Chai Chee Post Office
Singapore

Tel. 412633

Graham Lang
Laboratories RCA Ltd.
Badenerstrasse 569
8048 Zurich
Switzerland

Tel. (01) 526350

Mike Bennett

Riva Turnkey Computer Systems
Caroline House

125 Bradshawgate

Bolton

Lancashire

United Kingdom

Tel, (0204) 384112

Although every effort is made to ensure the accuracy of the Prices quoted apply only in U.S.A. If outside the U.S., contact
data presented in the Communicator, Hewlett-Packard can- your local sales and service office for prices in your country.
not assume liability for the information contained herein.

Printed in U.S.A. 12/81 Part No. 5951-811
E1281

