HEWLETT w PACKARD

Computer Systems

1978 Volume Il Issue No. 6

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

EDITOR'S DESK

If the last issue of the COMMUNICATOR was nicknamed DRIVER HINTS/1000 then perhaps this issue should be called
EXTENDED MEMORY ARRAYS. Both Martha Robrahn and Larry Smith wrote articles on sharing EMA between programs for this
issue, a feature which | would like to pointout is NOT an HP supported feature. Van Diehl was kind enough to let us republish his
article describing normal EMA for those of you who have not had exposure to EMA before. (Van's article was previously
published in HP internal literature.)

ANNOUNCING CALCULATOR WINNERS!

Martha Robrahn of Hewlett-Packard in the Neely Los Angles office is this month's HP-32E winner for HP employees outside of
Data Systems Division. Martha's article, “Sharing Extended Memory Arrays in RTE-IV", was judged to be best on the areas of
clarity, completeness of subject covered and interest to the largest segment of our readership. Millo Fenzi is this month’s
HP-32E winner for HP employees inside Data System Division. Millo and Paul Streit, his co-author, wrote an excellent article
titled “Data Capture in Manufacturing”. Millo and Paul had no competition this month. Alas, once again we had no customer
calculator winners. Unfortunately, we have no articles in the OEM Comer this month either.

CUMULATIVE COMMUNICATOR/1000 INDEX

This is the last issue of Volume 2. The next issue of the COMMUNICATOR will be Volume 3 issue 1. Thanks to your support there
have been 22 issues of the COMMUNICATOR since it began publication in June of 1975. To commemorate this, a cumulative
index of all past issues has been included in the BIT BUCKET of this issue.

DEADLINES

The tentative deadlines for submitting articles for Volume 3 are:

Issue 1 January 12, 1979
Issue 2 March 16, 1979
Issue 3 May 11, 1979
Issue 4 July 13, 1979
Issue 5 September 7, 1979
Issue 6 November 2, 1979

We hope that more readers will submit articles in Volume 3, either in hopes of winning a calculator, as a contribution to the OEM
comer, as hints for other users in the Bit Bucket ar as letters for User's Queue or for Software Samantha.

CONTENTS

User's Queue Operations Management
e Contributed Library 1 e Data Capture in Manufacturing.............. 42
o letters e, 4 e Minimizing Synonynms in IMAGE/1000 56
Operating Systems :
P s Bit Bucket
® Reclaiming Class Numbers 5
e Software Samantha 63

. e Working with Multipoint 65
Instrumentation e JulianCalender 68
e Controlling the 8660 with HP-IB 14 e Communicator/1000 Index 70
Computation Bullet
e Extended Memory Arrays 20 ulletins
® Shared EMA Arrays in RTE-IV 23 e Software Sources for RTE-IV 83

® Shared EMA for RTE-IV 36 e Training Schedule 84

EDITOR'S DESK

WIN AN HP-32E CALCULATOR!

Since its beginning in 1975, the Communicator has changed format several times. During this period, the primary source of
technical articles has been employees of HP Data Systems Division. In order to increase the diversity of topics and number of
articles we are soliciting articles from customers and other HP divisions. To make it worth your time, three free HP-32E
hand-held calculators will be awarded per issue (one to a customer, one to an HP employee of HP Data Systems Division and
one to an HP employee not from Data Systems Division) to the authors of the best feature-length articles which fall in one of the
following categories:

Operating Systems

Instrumentation

Computation

Operations Management
The employees of the Technical Marketing department of Data Systems Division are not eligible for the calculator prize: all other
HP employees are eligible. Customers and HP employees will not compete against each other, since HP employees have
access to more information. Likewise, employees of Data Systems Division will not compete against employees not from Data
Systems Division. A prize will be awarded even if there is only a single entry.
A feature-length article must meet the following criteria:

1. The topic must be of general interest to our readers and fall into one of the four categories above.

2. ltmust cover at least two pages in the 1000 Communicator, exclusive of listings and illustrations. At the current print size,
this is approximately 1650 words.

The eligibility rules for receiving a calcutator are:
1. No individual will be awarded more than one calculator per calender year.
2. Inthe case of multiple authors, the calculator will be awarded to the first listed author of the winning article.

3. Anarticle which is part of a series will compete on its own merits with other articles in the issue. The total of all articles in the
series will not compete against the total of all articles in another series.

4. Employees of Technical Marketing in HP Data Systems Division are not eligible.

The winning article will be the best article submitted based on the areas of clarity, completeness of subject coverage and

interest to the largest segment of our readership. All entries will be judged by a team of at least three people in Technical
Marketing.

All winners will be announced in the HP 1000 Communicator in the issue in which their articles appear. It is greatly appreciated
if the text of the article and any listings are submitted in machine-readable form, i.e. a file on a magnetic tape, mini-cartridge or
paper tape.

Address all communications to:
Editor HP 1000 Communicator
Hewlett-Packard Data Systems Division

11000 Wolfe Road
Cupertino, California 95014

1i

EDITOR’'S DESK

THE OEM CORNER OF THE HP-1000 COMMUNICATOR

Issue 3 marked the start of a major new section of the HP 1000 Communicator — the OEM Comer. This section is for HP
customers who market software of their own development for use on HP 1000 systems. The software may be a part of a system
package which the OEM delivers as a "“turnkey” package or a standalone software package. HP has many quality OEMs whose
products often address markets which are specialized or aimed at a specific application area. Therefore, these products
complement the systems offered by HP itself.

In issue 3, we had “A Modern Language for On-Line Systems"” by David C. Hamilton of Theta Computer Systems in Van Nuys,
California.

In issue 4 there were no articles.
Inissue 5, we have "Software for the 2645 Terminal” by P. Alex Swartz of Computer Systems Consultants of Tucson, Arizona.

To qualify for inclusion in OEM Corner, an article should be of general interest to our readers and have educational value. That
is, it should describe a technique or method of doing something. The article should contain numberous examples and be
application-oriented rather than theoretical. We encourage the OEM to describe as many of the features of his product as he
wishes but, in all cases, we are looking for general inter-educational value. A reprint of a press release or a marketing brochure
is not sufficiently technical to qualify.

We encourage the OEM to place, at the very end of the article, up to 150 words of purely commercial information. This may
include prices of the product and ordering information.

It is expected that OEM software products complement the HP product line or present a more complete solution to a problem.
HP, in contrast, sells tools of a general nature. Therefore, some explanation of this sort is permissable in the OEM's article. The
article should present a technigue or innovative idea of general interest to HP customers.

The readership of the Communicator is assumed to cover the full range from the neophyte to the expert. Therefore, the author
may address any level of expertise he chooses. However, the clarity of presentation is always an important consideration,
regardless of the assumed background of the reader.

The article should be a minimum of 4 typed, doubie-spaced pages. Only in unusual cases should an article be more than 10
type written pages.

All articles are subject to editorship and minor revisions. In general the author will be contacted if there is any question of
changing the information content. Articles requiring major revision will be returned with an explanatory note. We hope not to
return any articles and would like to work with all authors to avercome any objections. However, HP reserves the right to reject
any articles judged not to be of general interest to HP customers.
All communications should include the author's address and phone number.
If possible, include the text of the article in machine-readable form, i.e. a file on magnetic tape, mini-cartridge or paper tape.
Address all Communications to:

Editor HP 1000 Communicator

Hewlett-Packard Data Systems Division

11000 Wolfe Road
Cupertino, California 95014

iiifiv

 USER'S QUEUE

NEW CONTRIBUTED PROGRAMS

Elisabeth Caloyannis/HP Data Systems Division

This article serves as an update for the Data Systems LOCUS Program Catalog (22000-90099).

The new contributed programs listed below are now available. Contact your local HP Sales Office to order Contributed Library
Material, or (if you are in the U.S.) you can use the Direct Mail Order form at the back of the COMMUNICATOR 1000.

22683-10906

-22683-13307

SPL/2100 — SPL Compiler

System Programming Language (SPL) is a high-level language for writing programs such as compilers,
device drivers, and operating systems. SPL/2100 is a version designed for use with the HP 1000 series
computer.

The SPL/2100 compiler can be used with an RTE-II, Ill or IV system. A program size of 15 pages should
be specified when the compiler is loaded.

The compiler translates programs written in SPL/2100 to HP Assembly Language. The SPL program is

input from the LS area and the resulting assembly language program is output back to the LS area. The
compiler then schedules the HP Assember to process the assembly language program and generate
the object code.

Since the RTE-IV assembler does not accept source programs from the LS area, the user must first
save the LS area as a disc file and then schedule the assembler.

22683-10906 800 bpi MT $70.00
22683-11906 1600 bpi MT $70.00

TIME — HP-IB time program

TIME is a user program written in FORTRAN which accesses the 59309A HP-IB clock to set the time in
an RTE-M (Il and III), RTE-II, [l or [V system. The primary purpose of TIME is to automatically set the
system time in the WELCOM file during RTE boot-up. Simply enter:

:RU,TIME,1,1978,50

where 1 is the input LU, 1978 is the year, 50 is the 59309A LU and you wish to set the system time (CS).
Actually, four commands can be used when the program is run interactively. CS accesses the clock,
obtains the time and sets the system time. SC obtains the system time and then accesses the 59309A
and updates it. OS allows an operator at a user terminal to update the 53309A from the program
(without touching the clock) and simultaneously updates the system time. OC is similar to OS except
that only the 59309A is updated.

:RU,TIME, input,year,59309A LU, command

if command=0 and the 59309A LU is non-zero, the command defaults to CS and terminates. If the
59309A LU is O the program is interactive.

CS — 59309A sets the system time

SC — System sets the 59309A clock

OS — Operator sets the 59309A clock which sets the system time
OC — Operator sets the 59309A clock

22683-13307 mini-cartridge $60.00

1

USER'S QUEUIE

22683-13308

22683-13309

22683-13310

22683-13311

TODAY — Date formatting program

The TODAY subroutine translates system time into a date/time message in a 14 word buffer in the
following format:

FRI 26 MAR 1976 18:24:30.09

where today’s date is Friday, March 26, 1976 and the time is 6:24 PM and 30.09 seconds. Note that if
the first two words and the last three words of the buffer are stripped off, the date would be displayed
as:

26 MAR 1976 18:24

22683-13308 mini-cartridge $40.00

STRNG — conversion subroutine

Mixed groups of integer and real values, prefixed by one or two ASClt characters will be converted to a
prefix, a real value, an integer value and an error indicator. The package contains three demostration
programs using STRNG, one of which illustrates a pseudo-namelist capability.

22683-13309 mini-cartridge $50.00

POWER — outspool program

POWER will add versatility to your outspool applications. POWER offers forward and backward
positioning, line and page counts, multiple copies, spool or standard format, and run cost based on
CPU time when the standard JOB headers are present in the outspool file.

POWER has several features not available in GASP. Spooling can be shut down and POWER can
handle the printing. A file may be restarted from any page or line in the event of printer malfunction. The
file remains intact after printing until the operator issues the “KS” command.

POWER uses the "@" as a prompt character and will list all available functions if ?? is entered.

POWER locks the line printer and will respond to the break flag while printing. POWER requires a 7
page partition.

The source file is well commented so that on-site modifications can be made.

22683-13310 mini-cartridge $35.00

LISTB — list a FMP file

Program LISTB is a program to list a FMP file of any type to an output device in binary-mixed format or
ASCII format. The program is especially useful for listing files with record lengths of greater than 128
words, and will handle files with record lengths up to 1024 words. The list format is similar to the file
manager Lt command format, but requires 130 columns on aline printer. You may list the entire file, or
only part of the file. LISTB requires an 8 page partition.

22683-13311 mini-cartridge $35.00

22683-13312

22683-13313

22683-13314

USER'S QUEUE

FOUMP — dump a FMP file

FDUMP is a program that will dump FMP files of type 10 or less to the list device in a format much like
that used in the IBM DITTO utility. The record is listed in 128 character blocks, giving octal representa-
tion and column alignment numbers below the ASCII vaiues. The maximum record length is 1024
words. Integer values are not printed, however their octal equivalents are. Input is from file or logical
unit. By specifying the starting record number you can position the file to a predetermined record.
FDUMP will respond to the break flag at any time. FDUMP needs a 9 page partition.

22683-13312 mini-cartridge $35.00

EBC2A — EBCDIC translation

Program EBC2A converts variable-length EBCDIC coded records from an input device or disc file to
ASCII code and stores the translated records to an output device or disc file. Maximum allowable
record length is 1024 words, but can be modified as required. Options are set through the RUN
parameters. The options allow you to begin translation at a specified record and translate a given
number of records. Defaults are to do input and output to a disc file and translate the entire file.

If the input or output is from the disc, the program will interactively prompt for the input and/or output file
name. If the output file does not exist, EBC2A will create it.

The program requires 5 pages. If disc files are used, then spooling must be enabled for the system.

22682-13313 mini-cartridge $35.00

A2EBC — ASCII to EBCDIC

Program A2EBC converts variable-length ASCII coded records from an input device or disc file to
EBCDIC code and stores the translated records to an output device or disc file. Maximum allowable
record length is 1024 words, but can be modified as required. Options are set through the RUN
parameters. The options allow you to begin translation at a specified record and translate a given
number of records. Defaults are to input and output to a disc file and translate the entire file.

If the input and/or output is from the disc, the program will interactively prompt for the input or output file
names. If the output file does not exist, A2EBC will create it.

The program requires & pages. If disc files are used, then spooling must be enabled for the system.

22683-13314 mini-cartridge $35.00

OPERATING SYSTEMS

LETTERS
“Dear Editor (EDITR?),

Regarding “Operating Systems” miscellany on page 15 of Volume 2 issue 4: Using "PROGX" example it (the program) can
become a six character type 6 file using

:SP,PROGX
:RN,PROGX ,PROGX1

If the command :RU,PROGX1 is given, the program in the type € file is not executed if the original is still in the ‘LOADR’ because
the ‘RUN’ command looks at the program list for first five characters before looking on LU2 and LUS for type 6 files. In the case
where the original is no longer in the program list, the type 6 file will be executed, but under the five character name.

I’'m pleased with the effort of COMMUNICATOR to allow HP users to know each other, but | think a directory of HP 1000 users
published in the COMMUNICATOR would help even more.

Sincerely,

David Welborn

Micro Craft, Inc.

Tullahoma, Tennessee 37389

P.S. How about publishing a Julian calendar in the COMMUNICATOR?”

Thank you for your comments. My name is indeed Editor although | am not too particular. You are correct that the FMGR will not
run a program from a type 6 file if there is an ID segment for that program. It the case above is changed to:

:SP,PROGY
:RN,PRGV,PROGX1
: 0OF ,PROGX,8
there will be no problem.
We are glad you find the COMMUNICATOR useful, but it is against HP policy to release a list of our customers.

Also, you will probably be glad to note that the Julian calendar in the BIT BUCKET is entirely due to your suggestion.

Thanks for writing

OPERATING SYSTEMS

RECLAIMING CLASS NUMBERS
Dave R. Fullerton/HP Neely Santa Clara

The first time use of class /O by the inexperienced user can be difficult. First, all those parameters and bits to set. Second,
when the program aborts or the CALL EXEC 21 is not quite perfect, the class number disappears, never to be seen again until
re-boot. This problem can also plague the experienced programmer during program developement.

So, how to avoid the headaches and get the benefits? To simply avoid using class /O is unacceptable since it does many
unigue things in RTE. (Some examples are “Using Class I/O in a Sort Application” in the HP 1000 COMMUNICATOR Volume 1
issue 16 and “Multiterminal I/O" in the HP 1000 COMMUNICATOR Volume 2 issue 2.) To help with the successful application of
class /O, two subroutines CGET and RELES are provided as examples, along with a program CLEAN to keep class numbers
from dissappearing.

THE PROBLEMS

1. Allocating a class number.
2. De-allocating a class number.

3. A program aborts leaving garbage in System Available Memory (SAM) and the class number allocated.

THE SOLUTIONS
1. Subroutine CGET will request a class number from RTE and return it to the calling program.

2. Subroutine RELES will release all unclaimed buffers in SAM that are linked to the class number and then return the class
number to RTE.

3 Program CLEAN will clear SAM and release any class number that was obtained from the routine CGET.

SOME BACKGROUND

When a request is made for a class number, an entry is made in atable in RTE. This entry stays there until specifically released
by some program. Note that any program can release a class number — not just the program that requested it. So, while it is a
definate feature that a program can get some class numbers, pass them to other programs and then go dormant, it also means
that RTE cannot release resources when programs accidentally go away without releasing their class numbers.

This is typically a problem only during program development when “bugs" cause abnormal termination. If development is being
done on a stand alone system even this is no cause for concern since it is very easy to re-boot and recover the system
resources. However, if development is done on a production system, then shutting everything down to re-boot becomes a
problem.

To avoid these situations it would be nice to store the class number somewhere, so that it could be released if the program fails
to do it. This is what the subroutine CGET does. Besides allocating a class number and returning it to the calling program, it also
logs the class number, the program name, and the time of day to a disk file named *CL.NO. The calling sequence is:

CALL CGETCICLS,N1,N2,N3,LU)

where ICLS contains the class number on return, N1-N3 contain the name of the program, and LU is the lu number for error
messages.

OPERATING SYSTEMS

When the program is finished with the class number, a call to RELES will return the number to RTE and remove the log entry
from the disk file. To call RELES:

CALL RELESCICLS,LU)
where ICLS contains the class number, and LU is the Iu for error messages.

To check the contents of the log file and/or remove an entry, use the program CLEAN. CLEAN will prompt you for the class
number to de-allocate, then it will remove all buffers, return the number to RTE and, finally it will delete the entry from the log file.

THE FUTURE

While these routines work well for keeping track of class number allocaton, they require that the user manually clear the class
number with CLEAN if there is a failure. It would be nice if CLEAN could be modified so that is would clear the number
automatically. In fact this can be extremely important in certain real-time applications. The challenge to all readers is this: is
there a way to have a program in the time schedule list that periodically checks the class number log file to see if anybody went
away without clearing SAM? Remember, the program could have gone dormant and another program or programs are using
the class number, so the problem is not an easy one. | look forward to reading possible solutions to this problem in future issues
of the COMMUNICATOR.

EDITOR'S NOTE: | feel that this problem is non-deterministic and look forward to reading a rigerous proof of this in some future
issue of the COMMUNICATOR.

OPERATING SYSTEMS

PAGE 0001 FTN. 5:48 PM WED., 29 NOV., 1978

0001 FTN4,L

0002 SUBROUTINE CGETC(ICLS,N1,N2,N3,LU)

0003 DIMENSION NAME(3),1S2(2),IB(8),IBUF(8),IDCB(144),1T(5)
0004 DATA NAME/2H+C,2HL.,2HNO/,152/1,8/,1SC/2HCL/

0005 C

0006 C THIS SUBROUTINE WILL ALLOCATE A CLASS NUMBER AND LOG
0007 C THAT TRANSACTION TO A DISC FILE

0o0o8 C THIS WAY IF THE CALLING PROPGRAM ABORTS THE NUMBER
0009 C MAY BE RELEASED BY SOME OTHER PROGRAM

0010 C

0011 C TO CALL THIS ROUTINE IN FORTRAN

o012 C CALL CGET(CLASS-NUMBER VARIABLE,ID1,I1D2,ID3,LU-NUMBER FOR ERROR MSG
0013 C WHERE ID1,ID2,ID3 ARE SOME PROGRAM ID FOR THE LOG FILE
0014 C SUCH AS THE PROGRAM NAME

0015 ¢C

0016 C THE DATA IS STORED IN A FILE «CL.NO

0017 C DATA IS WRITTEN TO THE DISC IN A TYPE 2 FILE

0018 ¢C EACH RECORD IS 8 WORDS LONG

0019 ¢C WORD(1)=THE CLASS NUMBER

0020 C WORD(2)=THE PROGRAM NAME- 1

0021 C WORD(3)>=THE PROGRAM NAME- 2

0022 ¢C WORD(4)>=THE PROGRAM NAME- 3

0023 C WORD(S5)>=THE TIME OF THE TRANSACTION (DAY)

0024 C WORD(6)=THE TIME OF THE TRANSACTION (HOUR)

0025 C WORD(7)=THE TIME OF THE TRANSACTION (MINUTES)

0026 C WORD(8)>=THE TIME OF THE TRANSACTION (SECONDS)

0027 ¢C

0028 ¢C + THE FIRST RECORD IS THE "“DIRECTORY®

0029 C + [T CONTAINS HOW MANY ENTRIES ARE IN THE FILE

0030 C

0031 ICLS=0

0032 ¢C

0033 C GET A CLASS # FROM THE SYSTEM

0034 C

0035 CALL EXEC(20,0,I1,1,IP1,IP2,ICLS)

0036 C

0037 C SET THE DO-NOT DEALLOCATE BIT

0038 C

0039 ICLS=ICLS5+20000B

0040 C

0041 C CLEAR THE CONTROL INFO IN SAM THAT WAS GENERATED BY THE ALLOCATE
0042 C

0043 CALL EXEC(21,ICLS,I1,1)

0044 C

0045 C CLASS NUMBER IS 0.K. - #»HOWEVER#+* IF I WERE A GOOD PROGRAMMER
0046 C I WOULD HAVE PUT ERROR CHECKS IN ALL THE EXEC CALLS
0047 C

0048 C LOG CLASS NUMBER TO DISC

0049 C

0050 C DOES THE FILE EXIST YET?? - TRY A CREATE AND SEE
0051 C

0052 CALL CREAT(IDCB, IER,NAME ,ISZ2,2,1SC,0)

0053 C

0054 C SEE IF IT WAS CREATED

0055 ¢C

OPERATING SYSTEMS

PAGE 0002 CGET 5:48 PM WED., 29 NOV., 1978

0056
0057
0058
0059
0060
0061

0062
0063
0064
0065
0066
0067
0068
0069
0070
0071

0072
0073
0074
0075
0076
0077
0078
0079
0080
0081

0082
0083
0084
0085
0086
0087
0088
0089
0020
0091

0092
0093
0094
0095
0096
0097
0098
0099
0100
0101

0102
0103
0104
0105
0106
0107
0108
0109

* %

IFCIER.GE.0) GO TO 222

g SEE IF IT EXISTS

¢ IFCIER.EQ.-2) GO TO 225

g HERE IF SOME THING WRONG

¢ IFCIER.LT.0)> CALL ERRORCLU,IER,1)

E HERE IF NEW FILE-SO OUTPUT HEADER RECORD

222 IBUF(1)=2
CALL WRITF(IDCB, IER,IBUF,8,1)
IFCIER.LT.0)> CALL ERROR(CLU,IER,2)

HERE TO ADD NEW CLASS #» TO FILE
FIRST GET AVAILABLE RECORD NUMBER

O0O0O0

225 CALL OPENCIDCB,IER,NAME,2,I1SC)
IFCIER.LT.0> CALL ERROR(LU,IER,3)
CALL READF(IDCB,IER,IBUF,8,IP1,1)
IFCIER.LT.0) CALL ERRORCLU,IER,4)

IBUF(1)=FIRST AVAILABLE RECORD
WRITE DATA TO FILE

OO0 O0

IB(1)=1ICLS
IB(2)=N1
IB(3)=N2
I[B(4)=N3

GET TIME

OO0

CALL EXECC11,IT)
IB(S5)=1T(5)
IB(6)=1T(4)
IBC(7)=1T(3)
IB(8)=1T(2)

LOG TO DISC

OO0

CALL WRITF(CIDCB, IER,IB,8,IBUF(1))
IFCIER.LT.0) CALL ERROR(LU,IER,S)

UPDATE DIRECTORY

OO0

IBUF(1)=1BUF(1)+1

CALL WRITF(IDCB,IER,IBUF,8,1)
IFCIER.LT.0D CALL ERROR(LU,IER,6)
CALL CLOSECIDCB)

RETURN

END

NO WARNINGS *# NO ERRORS #+» PROGRAM = 00414 COMMON = 00000

Figure 1. Subroutine CGET
8

PAGE 0001

0001

0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

0012
0013
0014
0015
0016
0017
0018
0019
0020
0021

0022
0023
0024
0025
0026
0027
0028
0029
0030
0031

0032
0033
0034
0035
0036
0037
0038
0039
0040
0041

0042
0043
0044
0045
0046
0047
0048
0049
0050
0051

0052
0053
0054
0055

FTN4,

O0OO0OOO0O0OO0OO0O0

O0O0OO0OO0OO0OO0O0O0O0

OO0

OO0 0 OO0

OCO0OO0OOO0O0

222

OO0

OPERATING SYSTEMS

FTN. S:37 PM WED., 29 NOV., 1978

L

SUBROUTINE RELESCICLS,LU)

DIMENSION IDCB(144),NAME(3),IBUF(8),I1B(8)
DATA NAME/2H+C,2HL.,2HNO/,ISC/2HCL/

THIS ROUTINE WILL DE-ALLOCATE A CLASS NUMBER AND REMOVE ITS
ENTRY FROM THE LOG FILE =CL.NO

TO CALL THIS ROUTINE IN FORTRAN
CALL RELES(CLASS-NUMBER,LU)

THIS ROUTINE WORKS WITH SUBROUTINE CGET

SET THE NO WAIT BIT

ICLS=10R(CICLS,100000B)

NOW - GO IN A LOOP AND DO CLASS GETS

THIS IS TO CLEAR OUT ANY ®“0OLD" DATA LEFT IN SAM
BY THIS NUMBER.

THIS WAY WE CLEAN UP SAM

AND THEN WHEN THERE IS ND DATA

(WHICH WE CHECK BY BIT 15 OF THE *“A'" REGISTER)
THE NUMBER CAN BE RELEASED

CALL EXEC(21,ICLS,I,1)

CHECK THE A REGISTER

CALL ABREG(IA,IB)

CHECK BIT 15

IFCIA.LT.0) GO TO 222

HERE IF BIT 15 0

SO THERE IS DATA IN SAM

GO BACK AND TRY AGAIN

UNTIL SAM IS CLEAR

GO TO 1

HERE WHEN THERE ARE NO MORE BUFERS IN SAM FOR THIS
CLASS NUMBER

CLEAR THE DO NOT DE-ALLOCATE BIT AND NO WAIT BITS
ICLS=IANDCICLS,17777B)

RELEASE NUMBER

CALL EXEC(21,ICLS,I1,0)

OPERATING SYSTEMS

PAGE 0002 RELES 5:37 PM WED., 29 NOV., 1978

0056 C REMOVE ENTRY FROM THE DISC FILE

0057 C

0058 ICLS=1CLS+20000B

0059 CALL OPENCIDCB, IER,NAME,2,1SC)

0060 IFCIER.LT.0> CALL ERRORCLU,IER,10)
0061 €

0062 C GET THE NUMBER OF ENTRIES FROM THE **DIRECTORY"
0063 C

0064 CALL READFCIDCB,IER,IBUF,8,1P1,1)
0065 C

0066 C IBUF(1)=THE NUMBER OF ENTRIES

0067 C

0068 DO 1S5 I=2,IBUF(1)

0069 CALL READF(IDCB,IER,IB,8,IP1,0)

0070 IFCIER.LT.0) CALL ERRORCLU,IER,11)
0071 IFCICLS.EGQ.IBC1)) GO TO 300

0072 C

0073 C NO MATCH SO GO TRY AGAIN

0074 C

0075 15 CONTINUE

0076 C

0077 ¢C HERE IF NO MATCH IN FILE

0078 C

0079 WRITE(LU,123) ICLS

0080 123 FORMAT("™ = NO MATCH FOR CLASS NUMBER #» ",08)
0081 PAUSE 123

0082 C

0083 C HERE IF MATCH IN FILE

0084 C

0085 ¢C NOW DELETE ENTRY FROM FILE

0086 C IF ITS THE LAST ENTRY IN THE FILE WE
0087 C ARE IN LUCK - ALL THAT NEEDS TO BE DONE
0088 C IS TO DECREMENT THE *“DIRECTORY"

0089 300 IFCI.EQ.IBUF(1)) GO TO 900

0090 C
0091 C NO SUCH LUCK
0092 C SO NOW WE HAVE TO MOVE UP ALL THE RECORDS BELOW
0093 C THE DELETED ENTRY
0094 C
0095 DO 20 J=I,IBUF(1)-2
0096 CALL READF(IDCB,IER,IB,8,IP1,J+1)
0097 IFCIER.LT.0) CALL ERROR(CLU,IER,12)
0098 CALL WRITF(IDCB, IER,IB,8,J)
0099 IFCIER.LT.0> CALL ERROR(CLU,IER,13)
0100 20 CONTINUE
0101 C
0102 ¢€ NOW UPDATE THE *DIRECTORY™
0103 C
0104 900 IBUF(1)=IBUF(1)-1
0105 CALL WRITFCIDCB,IER,IBUF,8,1)
0106 IFCIER.LT.0) CALL ERROR(LU,IER,14)
0107 C
0108 ¢C CLOSE FILE AND GO HOME
0109 C
0110 CALL CLOSECIDCB)
0111 RETURN
0112 END
#+ ND WARNINGS #+ NO ERRORS #+ PROGRAM = 00415 COMMON = 00001

Figure 2. Subroutine RELES

10

PAGE

0001
0002
0003
0004
0005
0006

* %

PAGE

0001

0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

0012
0013
0014
0015
0016
0017
0018
0019
0020
0021

0022
0023
0024
0025
0026
0027
0028
0029
0030
0031

6032
0033
0034
0035
0036
0037
0038
0039
0040
0041

0042
0043
0044
0045

0001

FTN4,

100

OPERATING SYSTEMS

FTN. 5:52 PM WED., 29 NOV., 1978

L

SUBROUTINE ERROR(LU,IER,IP)

WRITECLU,100) IER,IP

FORMAT("™ #» ERRDR ",13," #»» AT PROGRAM LOCATION *",12)
PAUSE 3

END

NO WARNINGS #+ NO ERRORS ## PROGRAM = 00046 COMMON = 00000

0001

FTN4,

oNoloNoNoNoNoNoNo NN o]

120

OO0

300

OO0 OO0

130

Figure 3. Subroutine ERROR

FTN. 5:54 PM WED., 29 NOV., 1978

L

PROGRAM CLEAN

DIMENSION IP(5),IDCB(144),NAME(3),IB(8),IBUF(8)
DATA NAME/2HsC,2HL.,2HNO/,ISC/2HCL/

THIS PROGRAM WILL LIST THE TABLE OF CLASS NUMBERS
IN FILE *CL.NO
THIS PROGRAM WORKS IN CONJUNCTION WITH SUBROUTINES
CGET AND RELES

THREE COMMANDS ARE AVAILABLE:

LIST-TO LIST THE CONTENTS OF THE FILE
RELEASE-TO RELEASE A CLASS NUMBER IN THE FILE
STOP-TD STDP THE PROGRAM

CALL RMPARCIP)

LU=IPC1)

IFCLU.LE.O0) LU=1
WRITEC(LU,100)

FORMAT(*" ENTER LI TO LIST, RE TO CLEAR A #, OR STOP _'")
READCLU,110) VU

FORMAT (A2)
IFCJ.EQ.2HLI) GO TO 300
IFCJ.EQ.2HRE) GO TO 330
IF(J.EQ.2HST) GO TO 999
WRITE(LU,120)

FORMAT (" ?72WHAT??7")

GO TO 1

HERE TO LIST THE FILE

CALL OPENCIDCB,IER,NAME,2,1SC)
IFCIER.LT.0) CALL ERRORCLU,IER,1)

GET THE NUMBER OF ENTRIES IN THE FILE FROM THE "DIRECTORY"
CALL READF(IDCB,IER,IBUF,8,IP1,1)

IBUF(1)=THE POINTER TO THE FIRST AVAILABLE RECORD
DO IBUF(1)-1=THE NUMBER OF RECORDS IN THE FILE

IFCIBUF(1).GT.2) GO TO 400

WRITE(LU,130)

FORMAT(*" SORRY - THERE ARE NO ENTRIES IN THE LOG FILE')
GO TO 1

11

OPERATING SYSTEMS

0046
0047
0048
0049
0050
0051
0052
0053
0054
0055

PAGE

0056
0057
0058
0059
0060
0061

0062
0063
0064
0065
0066
0067
0068
0069
0070

* #

c
c THERE IS SOMETHING IN THE FILE IF HERE SO PRINT!
c

400 WRITECLU,150)

150 FORMAT(///'" # CLASS # PROGRAM NAME TIME OF ENTRY DAY:HR:MM:SS*

1)
DO 15 I=2,IBUF(1)-1
CALL READF(IDCB,IER,I1B,8,I1P1,1)
IFCIER.LT.0> CALL ERRORCLU,IER,2)
WRITECLU,160) I,IB

0002 CLEAN 5:54 PM WED., 29 NOV., 1978

160 FORMAT([2,2X,16,5X,3A2,10X,13,":",12,":",12,":",12)

1S CONTINUE
c
c HERE WHEN DONE PRINTING
c

GO TO 1

c
c HERE TO RELEASE A CLASS NUMBER
c

330 WRITECLU,170)

170 FORMAT("™ WHICH NUMBER TO RELEASE ?? (PLEASE ENTER CLASS #)'*)

READCLU,*) J
CALL RELESCJ,LU)
GO TO 1
999 END
NO WARNINGS ##+ NO ERRORS #=# PROGRAM = 00496 COMMON = 00000

Figure 4. Program CLEAN

12

OPERATING SYSTEMS

PAGE 0001 FTN. 5:45 PM WED., 29 NOV., 1978

0001 FTN4,L

0002 PROGRAM TEST
0003 C
0004 C THIS PROGRAM CALLS A ROUTINE TO OBTAIN A CLASS #
0005 C
0006 DIMENSION IP(S)
0007 DATA N1/2HTE/,N2/2HST/,N3/2H /
0008 CALL RMPARCIP)
0009 LU=IPC1)
0010 IFCLU.LE.O0) LU=1
0011 C
0012 ¢C GET A CLASS #
0013 C ICLS HAS A VALID CLASS # ON RETURN
0014 C s#+ WITH THE DO-NOT DEALLOCATE BIT SET (BIT 13) #x»
0015 ¢C N1-N3 HAS THE PROGRAM 1D OR NAME
0016 C
0017 WRITECLU,100)
0018 100 FORMAT("GETTING CLASS #')
0019 CALL CGETC(ICLS,N1,N2,N3,LW)
0020 WRITECLU,101)
go21 101 FORMAT("HAVE NUMBER*)
0022 PAUSE 777
0023 CALL RELESCICLS,LU)
0024 WRITECLU,123)
0025 123 FORMAT(' CL ALL GONE')
0026 C
0027 END
#+ NO WARNINGS #+ NO ERRORS == PROGRAM = 00093 COMMON = 00000

Figure 5. Program TEST

13

INSTRUMENTATION

CONTROLLING THE 8660A/B/C WITH HP-IB

Neal Kuhn/HP Data Systemns Division

This article presents a group of device subroutines to control the HP8660A/B/C through HP-IB. The HP8BGOA/B/C is a
Synthesized Signal Generator. The A/B/C in this article refers to the A,B, and C versions. When equipped with the HP-IB option,
most of the 8660A/B/C's functions, such as frequency, output level, and modulation can be controlled by a computing controller
such as the HP 1000.

The HP8660A/B/C was one of the original HP-IB devices (created even before the IEEE Standard), and presents some
requirements that prevent straightforward HP-IB control. The 8680A/B/C was retrofitted to allow HP-IB operation, and as a
result, the 8660A/B/C expects all data strings to be sent to it in reverse order (least significant digit to most significant digit).
Leading zeroes are also needed, and each function has a specific requirement for the number of allowable digits. For example,
frequency is programmed in hertz with 10 significant digits. The frequency 57.34 Mhz is 0057340000 hz (to 10 digits).
Reversing the string yields 0000437500. That is the string needed by the 8660A/B/C.

PROGRAMMABLE SIGNIFICANT DIGITS

Function Number of Significant Digits
Frequency 10
Output Level 3
AM 2
FM Deviation 2

A generalized method of string reversal is not simple when using the HP 1000. The reason is that the HP 1000 stores floating
point (and double precision) values in "logarithimic” format as an exponent and mantissa in base 2. Division by 10 is not just a
shifting of the decimal place, but a full floating point operation.

The solution to 8660A/B/C control is the creation of a group of device subroutines. These subroutines would reverse the data,
translate to a proper reference level, zero fill as appropriate, and send the data to the 8660A/B/C complete with the proper
control characters.

The listing that follow contain five routines. Four are device subroutines to set frequency, amplitude modulation, FM deviation,

and output level. The fifth routine is a utility program to run diagnostic tests with the 8660A/B/C. With this utility program, any of
the above four parameters can be sent from a terminal.

14

INSTRUMENTATION

LOADING AND RUNNING

All routines were written in FORTRAN V. Either load the appropriate subroutines with a user written main program, or load all
four subroutines along with the utility program. The utility program uses the new (*MESS) HP-IB library.

Each device subroutine requires two parameters. The first is the LU of the 8660A/B/C. The second parameter is the value for the
respective function to be performed. Note that the RFF (frequency set) routine requires a double precision value. All other
parameter values are real, and of course, the LU values are integers.

The utility program looks for and requires three parameters when run. The first parameter is the LU of the terminal that you are
operating from. The program will obtain it if you leave the parameter blank. The second parameter is the LU of the HP-IB, and
the third is the LU of the 8660. The calling sequence will look like:

:RU,T8660,LUTERM,LUBUS,LUB660

The utility program will then interactively prompt the user for commands. First it will ask for a function to perform, then for a
value. The set of functions which the program recognizes is:

set AM modulation

set FM deviation

set frequency (double precision required)
set RF level

STOP

»w - Tm g >

The device subroutines shown control the major functions for the HP8660A/B/C. There are other functions which can be
programmed. For a complete discussion on the 8660A/B/C, refer to the operation and service manual for the 8660A/B/C (pn
08660-90046), and the HP-IB Users Guide for the HP 1000 (pn 59310-90064). Also, Application Note 164-2, “Calculator Control
of the 8660A/B/C Synthesized Signal Generator” details most of the information needed to control the synthesizer on HP-(B.

15

INSTRUMENTATION

PAGE

0001

0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

0012
0013
0014
0015
0016
0017
0018
0019
0020
0021

0022
0023
0024
0025
0026
0027
o028
0029
0030
0031

0032
0033
0034
0035
0036
0037
0038
0039
0040
0041

0042
0043
0044
0045
0046
0047
0048
0049
0050

0051

0052
0053
0054
0055

0001

FTN. 4:11 PM THU., 30 NOV., 1978

FTN4,L

sNoNeoNoNsNoNoNoNoNoNoloNoNoNoNoNoloNe Ne Ne

333

101

102

a2

33

PROGRAM T8660

THIS IS A UTILITY ROUTINE TO DRIVE THE 8660 SYNTHESIZED SIGNAL
GENERATOR. THIS ROUTINE PERFORMS THE FOLLOWING FUNCTIONS:

A SETS AM MODULATION
D : SETS FM DEVIATION
F : SETS FREQUENCY

L : SETS LEVEL

S STOP

THE CALLING PARAMETERS FOR THIS ROUTINE ARE:
:RU,T8660, TERMINAL ,BUSLU,8660LU

WHERE TERMINAL IS THE LU OF YDUR TERMINAL,
BUSLU IS THE LU OF THE HPIB BUS

AND 8660LU IS THE LU FOR THE 8660.

INTEGER IP(5),TLU,BLU

DOUBLE PRECISION DVAL

CALL RMPARCIP)

TLU=IP

IFCIP.EQ.0) TLU=1

ILU=1P(3)

BLU=IP(2)

CALL RMOTE(BLU)

WRITECILU,333)

FORMAT('/1000¢351C88$00%"')

WRITECTLU,101)

FORMAT("ENTER COMAND*)

READ(TLU,102) ICMD

FORMATC1A1)

IFCICMD.EG.1HA) GO TO 11

IFCICMD.EQ.1HD) GO TO 22

IFCICMD.EQ.1HL)Y GO TO 33

IFCICMD.EQ.1HF) GO TO 44

IFCICMD.EQ.1HS) GO TO 99

GO TO 88

FORMAT("ENTER VALUE _"™)

WRITE(CTLU,103)

READCTLU,) VAL

CALL RFACILU,VAL)

GO TO 66

WRITECTLU,103)

READ(TLU,«) VAL

CALL RFDCILU,VAL)

GO TO 66

WRITECTLU,103)

READ(TLU,+) VAL

CALL RFLCILU,VAL)

16

PAGE

0056
0057
0058
0059
0060
0061
0062
0063
0064
0065

PAGE

0001
0002
0003
0004
000S
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021

INSTRUMENTATION

0002 T8660 4:11 PM THU., 30 NOV., 1978

GO TO 66
44 WRITECTLU,103)
READ(TLU, *> DVAL
CALL RFFCILU,DVAL)
GO TO 66
88 WRITECTLU,104)
104 FORMAT("BAD COMMAND--TRY AGAIN')

GO TO 66
29 sTOoP
END
NO WARNINGS =#» NO ERRORS =+ PROGRAM = 00230 COMMON = 00000

0001 FTN. 4:15 PM THU., 30 NOV., 1978

FTN4,L
SUBROUTINE RFA(DLU,AMP), 8660 AM MODULATION SET NHK-5/78

c
c THIS ROUTINE SETS UP AM MODULATION AND THE % MODULATION FOR THE 8660
c THE PROGRAM RECEIVES THE LU OF THE 8660 AND THE PERCENTAGE MODULATION
c THE PROGRAM REVERSES THE ORDER OF THE MODULATION DIGITS, AND SENDS
c THE PROPER CHARACTERS TO THE 8660 TO SET UP AM, AND THE PERCENTAGE
c REQUESTED.

INTEGER IBUF1(2),IBUF2(2),DLU

CALL CODE

WRITECIBUF1,101) AMP
101 FORMATC112)
IL=IANDCIBUF1(1)/400B,377B>
IFCIL.EQ.040B) IL=060B
[H=TANDCIBUF1(1),377B)
IFCIH.EQ.040B) IH=060B
88 IBUF2¢1)=1H#400B+IL
WRITE(DLU,102)IBUF2C1)
102 FORMAT(*888",1A2,"%*")
RETURN
END

NO WARNINGS #+ NO ERRORS #*# PROGRAM = 00093 COMMON = 00000

17

INSTRUMENTATION

PAGE

0001

0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

0012
0013
0014
0015
0016
0017
0018
0019
0020
0021

0022
0023
0024
0025
0026
0027
0028
0029
0030
0031

PAGE

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023

*

0001

FTN. 4:15 PM THU., 30 NOV., 1978

FTN4,L

loNoNoloNoNoNeN e

101

102

88

SUBROUTINE RFD(DLU,DEV), 8660 FM DEVIATION SET NHK-5/78

THIS ROUTINE SETS UP FM DEVIATION FOR THE 8660. THE ROUTINE
RECEIVES THE LU OF THE 8660, AND THE AMOUNT OF DEVIATION. SINCE
ONLY TWO DIGITS ARE SENT 0OUT TO THE 8660, THIS ROUTINE WILL
DETERMINE THE SCALING OF THE VALUE (LESS THAN OR GREATER THAN
10 KILOHERTZ). THE ROUTINE THEN REVERSES THE DIGITS, AND SENDS
CONTROL CHARACTERS TO SET THE MODE AND SOURCE, THE VALUE, AND THE
PROPER TERMINATOR CHARACTER.

INTEGER IBUF1(2),1BUF2(2),DLU

IRNG=0

IF(DEV.LT.10.0> GO TO 88

CALL CODE

WRITECIBUF1,101) DEV

FORMATC112)

IL=IANDCIBUF1(1)/400B,377B)

IFCIL.EQ.040B) IL=060B

IH=TANDCIBUF1(1),377B)

IFCIH.EQ.040B) IH=060B

[BUF2(1)=TH+400B+IL

IRNG=2+(IRNG+*2)

WRITE(DLU,102>IRNG, IBUF2(1)

FORMAT ("8, 11,%"$",1A2,"%")

RETURN

IRNG=1

A=DEV=*10

CALL CODE

WRITECIBUF1,101) A

GO TO 44

END

NO WARNINGS =+ NO ERRORS #« PROGRAM = 00138 COMMON = 00000

0001

FTN. 4:15 PM THU., 30 NOV., 1978

FTN4,L

c

oNoNoNe]

101

88

102

SUBROUTINE RFF(DLU,FRQ), 8660 FREQUENCY SET NHK-5/78

INTEGER IBUF1(5),1BUF2(5),DLU

THIS ROUTINE SETS UP THE FREQUENCY FOR THE 8660. THE FREQUENCY

IS SENT TO THIS ROUTIE AS A DOUBLE PRECISION VALUE SINCE TEN DIGITS
ARE REQUIRED. THE ROUTINE RECEIVES THE LU OF THE 8660 AND THE FREQ.
IT REVERSES THE ORDER OF THE DIGITS, AND SENDS THE VALUE TO THE 8660
DOUBLE PRECISION FRQ,A

A=FRQ»1EG

CALL CODE

WRITECIBUF1,101) A

FORMATC1110)

bo 88 I1=1,5

IL=IANDCIBUF1(¢1)/400B,377B)

IFCIL.EG.040B) IL=060B

IH=TANDCIBUF1(I),377B)

IFCIH.EQ.040B) IH=060B

IBUF2(6-1)=IH»400B+IL

WRITE(DLU,102)IBUF2

FORMAT (5A2,"('")

RETURN

END

NO WARNINGS #+ NO ERRORS =« PROGRAM = 00130 COMMON = 00000

18

INSTRUMENTATION

PAGE 0001 FTN. 4:16 PM THU., 30 NOV., 1978

0001 FTN4,L

0002 SUBROUTINE RFL(DLU,LVL), 8660 RF QUTPUT LEVEL NHK-5/78
0003 C
0004 C THIS IS A ROUTINE TO SET OUTPUT LEVEL TO THE 8660. THE PROGRAM
0005 C RECEIVES THE LU OF THE SIG GEN, AND THE LEVEL IN DBM. THIS
0006 C ROUTINE REFERENCES THE LEVEL TO 13 DBM, REVERSES THE ORDER
0007 C OF THE DIGITS AND OUTPUTS THEM TO THE 8660 LU WITH THE PROPER
0008 C CONTROL CHARACTER.
0009 INTEGER IBUF1(2),1BUF2(2),DLU
0010 REAL LVL
0011 A=ABS(13-LVL)
0012 CALL CODE
0013 WRITECIBUF1,101) A
0014 101 FORMATC114)
0015 DO 88 1=1,2
0016 IL=1ANDCIBUF1(1)/400B,377B)
0017 IFCIL.EQ.040B) IL=060B
0018 IH=1ANDCIBUF1(I),377B)
0019 IFCIH.EG.040B) IH=060B
0020 88 IBUF2(3-1)=1H»400B+IL
0021 IBUF2(2)>=1ANDCIBUF2(2),177400B)
0022 IBUF2(2)>=1BUF2(2)+103B
0023 WRITE(DLU,102) IBUF2
0024 102 FORMAT(2A2)
0025 RETURN
0026 END
#» ND WARNINGS #+ NO ERRORS #++ PROGRAM = 00128 COMMON = 00000

19

COMPUTATION

EXTENDED MEMORY ARRAYS

Van Diehl/HP Data Systems Division

Extended memory area (EMA) is an area for arrays limited only by the size of the physical memory. Note that one or many arrays
may reside in the EMA and that these arrays may be small or very large. An EMA can extend well beyond the maximum
program addressable space. It occupies the available memory in the program’s partition that extends beyond the program’s

logical address space. (Figure 1).

A section of the EMA, two pages or more, must be included within the program’s logical address for the mapping of a window
segment (MSEG) of EMA. When a program accesses an array element that is not in the program logic address space, a window
around this element in EMA is mapped into MSEG, inside the program logic address space.

This mapping requires no disc swaps, therefore, it is very fast. STANDARD FORTRAN I/O AND ARRAY ACCESSES USING
SUBSCRIPTS ARE HANDLED WITHOUT ANY SPECIAL ACTION by the user. In FORTRAN, EMA arrays are used just like any
other array. Several sub-partitions can be defined on the area occupied by the mother partition. Thus, once the EMA use is
finished, the memory is available for other uses. A segmented program may use EMA. This allows many separate operations to
be performed on the same EMA, e.g., one segment reads the data, a second processes it and a third saves the results.
(Figure 2.)

Extended memory areas are used for large amounts of data storage, acquisition and processing. Accessing data within EMA
does not involve any disc access, therefore, it is quite fast. EMA’s are useful for data acquisition from fast devices at real time
rates. EMA’s would also be very useful in data processing that requires a iot of data accessing from random locations (e.g.,
sorting). Scientific applications using large matrices, like inverting a matrix, can be performed with ease and speed.

The beauty of EMA is that you can write programs in FORTRAN, using large data arrays, without any special user coded data
management functions.

2 MBYTE

EMA

777777277
LOCAL

COMMON
ARRAYS

MOTHER
PARTITION

~— ™

64 KBYTE 77 A

MSEG
PROGRAM
SPACE

TR A

A (20000.20) = 0

DVR PARTITION
TABLES AND BASE PAGE

Figure 1
20

COMPUTATION

it should be noted that programs using data in EMA will not always run faster than programs using data on disc. It is possible via
special user-coded data management functions to have programs with data stored on disc, running faster than FORTRAN
programs using EMA.

However, the comparison here is not straight apples-for-apples, because all EMA programs can be made to run faster than
disc programs if the user does his own mapping in assembler language.

This word of caution is added here because a user may convert an existing program, using some specially coded virtual data
management scheme and expect that the program will, in all cases, run faster using data in memory.

The features of EMA can thus be summarized as:

® FEasy FORTRAN coding of large array manipufation programs.
e Fast retrieval of random access data

e \Virtual data in memory is faster than virtual data on disc

® Fast retrieval of sequential data with user custom mapping

2 MBYTE

EMA

MOTHER
PARTITION

64 K p

SEGMENT OVERLAY
AREA

MAIN PROGRAM AREA

DVR PARTITION
TABLES & BP

Figure 2

21

COMPUTATION

AN ANALOGY

The EMA data area can be looked at as a secondary data storage area, i.e., very much like disc storage. As such, data in EMA
is not directly addressable but must first be brought into the logical address space of the program, i.e., small chunks of it are
brought into MSEG. Here again the disc analogy holds because when we want to read/write a data item from/to a record,

“chunks” of data (1 or more) are brought into main memory. However, for the FORTRAN programmer using EMA, all of that is
TRANSPARENT. He can address 2M bytes of data.

MOTHER PARTITION

A partition that is larger than the maximum logical address space is called a “mother partition”. A mother partition allows for
subpartitions. RTE-IV will use mother partitions to dispatch programs that use an Extender Memory Area (EMA). Subpartitions of
a mother partition have the same characteristics (real time or background) as the mother partition; they allow the user the
capacity of using the large amount of memory belonging to the mother partition to run many smaller programs, when the mother
partition is not in use.

For a more in-depth description of EMA, read the RTE-IV Programmers Reference Manual (92067-90001) and Wong and
Manley, "RTE-IV: The Megaword-Array Operating System” in Hewlett-Packard Journal, October, 1978,

22

- COMPUTATION

SHARING EXTENDED MEMORY ARRAYS IN RTE IV

Martha Robrahn/HP Neely Los Angeles

Once you have heard about all the wonderful things that Extended Memory Arrays (EMA) can do for you in RTE-IV, your next
question is “Can | share EMA between programs?”. HP's answer is no. However, with a few contributed subroutine calls and a
little bit of overhead in the sharing programs, the average FORTRAN programmer can indeed share EMA between programs.

For those readers unfamiliar with the concept, EMA is a feature of the RTE-IV operating system that allows the programmer to
access data arrays outside of his logical 32K word address space. This is accomplished at the program level by inserting one
additional control statement into the source code. The statement has the form

$EMA(blockname,MSEG size)

where blockname is a labeled common block name and MSEG size is the number of pages of EMA mapped into the program'’s
address space at one time. The MSEG size is essentially a movable “window” into the EMA area and is re-mapped by the EMA
utility routines .EMAP, .EMIO and MMAP as required by the program. The minimum MSEG size is two pages. This size can be
defaulted to 32 - program size - 1, the largest possible MSEG size, by setting the MSEG size to zero. Beyond the addition of this
control statement, extended memory access of local common block (blockname) is completely transparent to the FORTRAN
programmer.

EDITOR’S NOTE: Refer to the previous article for a full description of EMA.
For the purposes of this discussion, the following program names will be used: SEMA1 will designate the EMA program whose

EMA is to be shared and SEMA2 will designate the program(s) which will share SEMA1's EMA.

To fully understand how to share EMA, one must first be familiar with the information in an EMA program’s ID Segment and 1D
Segment Extension. (See figures 7 and 8)

At first glance it appears that if we modify WORD 2 of SEMAZ2’'s Segment Extension to reflect the physical starting page of
SEMA1's EMA then we should be able to “fool” the EMA utility routines and reference SEMA1's EMA from SEMA2. In fact this
approach does work, provided that both programs' EMA and COMMON declarations are identical.

FTN4,L FNT4,L
$EMA(BLK, 0) $EMA (BLK,0)
PROGRAM SEMA1 PROGRAM SEMAZ2
COMMON/BLK/1¢30000),AC300,100) COMMON/BLK/1(¢30000),AC300,100)
c c .
c c
c . C .
END END
EMA SIZE=88 PAGES EMA SIZE=88 PAGES
Figure 1 Figure 2

23

COMPUTATION

However, this means that for a large EMA, the memory allocated to SEMAZ2's EMA (88 pages) will be unused. For most users,
this approach is impractical to say the least.

Ideally one would like SEMAZ2 to have the capbilities of an EMA program with a minimum of wasted memory and associated

overhead.
FTN4,L FTN4,L
$EMA(BLK, 0) $EMACBLK,2)
PROGRAM SEMA1 PROGRAM SEMA2
COMMON/BLK/I1€¢30000),A(300,100) COMMON/BLK/IC1),AC1,1)
C . c .
C C
C . c .
END AC300,100)=Q
EMA S1Z2E=88 PAGES END

EMA SIZE=1 PAGE

Figure 3 Figure 4

This approach requires a little bit more work as well as a better understanding of how EMA works.

When an EMA program is compiled, FTN4 generates calls to the utility subroutine .EMAP for every reference made to an EMA
variable. One of the parameters .EMAP uses is a table describing the variable referenced. For the arrays | and A in figure 3
above, these tables would be:

TABLI DEC 1

DEC
DEC
DEC

DEC

TABLA DEC
DEC
DEC
DEC
DEC
DEC

DEC

-1
300
-1

30000

(# of dimensions)

(negative of lower bound of demension 1)

(# of words per element)

(first of two word integer specifying the array’s
offset from start of BLK - this is bits 15-0)
(bits 31-16 of above)

(# of dimensions)

(negative lower bound of dimension 2)

(# of elements in 1st dimension)

(negative lower bound of dimension 1)

(# of words per element)

(first of two word integer specifying the array’s
offset from start of BLK - this is bits 15-0)

(bits 31-16 of above)

Figure 5

24

COMPUTATION

For the arrays | and A in figure 4, these tables would be:

TABLI DEC 1 (# of dimensions)
DEC -1 (negative of lower bound of demension 1)
DEC 1 (# of words per element)
DEC 0 (first of two word integer specifying the array’s
offset from start of BLK - this is bits 15-0)
DEC O (bits 31-16 of above)
TABLA DEC 2 (# of dimensions)
DEC -1 (negative lower bound of dimension 2)
DEC 1 (# of elements in 15t dimension)
DEC -1 (negative lower bound of dimension 1)
DEC 2 (# of words per element)
DEC 1 (first of two word integer specifying the array’s
offset from start of BLK - this is bits 15-0)
DEC 0 (bits 31-16 of above)

Figure 6

Every array and variable declared in EMA wili have a similar table built by the compiler to be used by .EMAP. (The length of
each table = 3 + 2 * [# of dimensions in the array].)

Iinorder for SEMAZ in figure 4 to reference elements in array A beyond A(1,1), the EMA table for A in figure 6 must be modified
to reflect larger dimensions and a different offset (i.e., to be the same as the EMA table for A in figure 5). In addition, word 28 of
SEMAZ2's ID Segment must be modified to reflect a larger EMA size. Once these changes have been made to SEMAZ, then it
would be possible to access the entire array A in SEMA1 from SEMA2.

To put all these ideas into a cookbook type procedure (that really works), the following example is given for reader reference.

Program SEMA1 (with the real EMA) runs and locks itself into memory.

SEMAT picks up it's ID Segment extension using subroutine IDEX and word 28 of the ID Segment using EMASZ. The
calling sequences are as follows:

CALL IDEX CIEXT)
CALL EMASZ(CISIZE)

where |EXT is a three element array, and word 28 of the user’s ID segment is returned in ISIZE. These calls need only be
issued once in each program.

SEMA1 picks up the EMA tables corresponding to each array in EMA using GETAB. GETAB uses the following calling
sequence:

AC1,1)=0 (reference EMA variable)
CALL GETABCLEN, ITAB)

Where A is the EMA array, LEN is the length of the table (3 + 2 * [# of dimensions]) and ITAB will contain the tables address
on return.

The subroutine GETAB finds the position of the EMA table for each array by picking up the calling address and searching
backward in memory until it finds a JSB .EMAP. When this call is located, the subroutine picks up the EMA table address
from the call and accesses the table using this address. Refer to the listing of GETAB to see this.

SEMA1 schedules SEMA2 (and any other programs which will be sharing EMA) passing it the ID Segment word 28, ID
Segment extension and EMA table information.

25

COMPUTATION

15 14 13 121110 9 8 7 6 5 4 3 2 1 0

pem | == | == == == == == | === | = | = | === | == | = =] ==+

| List Linkage { word 0 \
LB L P | |
| TEMP 1) 1 i
| TEMP 2 | 2 |
| TEMP 3] 3 |
| TEMP 4 ! 4 |
TEMP 5	5
== e e e e e e	
Priority	6
Primary Entry Point i 7 *	
D ittt e lebobtd	
Point of Suspension] 8	
A-Register	9
B~Register	10
EO-Registers	11
= e R et T	
Name 1	Name 2
Name 2	Name 4
R e e R e i)	
Name 3 I T™IMLI//1SS] Type	14 *
(R e R e I R e Bl e Il e B] 1	
INal//INPI Wl Al//t Ol//1 Rl DI/////] Status	15
[==l== =~ === == == === =] == ===~ e ikt	
Time List Linkage	16
fmmmm e == e e e e	
RES I Tl Multiple	17
mmmmmmen == [ettt D e s e DL	
Low Order 16 Bits of Time	18

| e e e { |
| High Order 16 Bits of Time | 19 |
R e e e e B e e R e T | |
|BA|FW| MIATIRMIRE|PWIRN| Father ID Segment No. | 20 |
R e e R e e B e Rttt | |
IRPI#pgs. (no BP) | MPFI |//1 Partition No. =-1| 21
Rl Rt et | == =) mmm e e e i i
| Low Main Address | 22 *|
[e e e | !
| High main Address + 1 i 23 *|
o e e | |
| Low Base Page Address | 4 *|
P e e e e) |
| 4ign Base Page Address | 25 */
Rl R e D el | = e e e - |

LUl Program: Track | Sector | 26 *
[B e e fomm e e |

JLUI swap: Track | No. Tracks | 27

[R | === | mmmmm e |

IID Extension No. | EMA Size | 28

R e B T LR [et it i

| High Address + 1 of Largest Segment | 29

fmm e e |

| Reserved | 30\

fomr e e e | \Menory
| Reserved | 31
T et T e e { /Recsidents
| Negative MIM LU number { 32/

* = words used in short ID segments for projyram segments

Figure 7

26

COMPUTATION

15 14 1312 1110 9 8 7 6 5 4 3 2 1 0

|

|
L e e e e e e B e e R e e e Rt el |
[| | Word 0 |
NS	Current MSEG No.	# Pages MSEGI
==l-mmmmmeee e R R		
MSEG Start	DE} (Physical) EMA Start	Word 1
Page (logic.)!	Page	
==] e m e R B		
L /////////////////1 % Tracks for EMA Swap | Word 2
l/////////////////ll |
g gy +
where

NS = 0 if the MSEG is pointing to a standard segment of
the EMA (set up by .EMAP)

=1 if the MSEG is pointing to a non-standard segment
(set up by .EMIO or .EMAP)

DE = 0 if the EMA size was specified by the user

=1 if the EMA size is allowed to default to the
maximum size available to the system

Figure 8

From this point on, SEMA1 can execute normally. It should, however, have some way of determining the status of the other
programs sharing EMA so that it does not terminate before they are done accessing the data in his partition. In this
example, a value in the EMA is checked as a compietion flag.

SEMA2 must declare its EMA to have the same structure as SEMA1’s EMA. It need not be the same size. (See second
example above and attached listings as examples).

SEMA2 must pick up the information passed from SEMA1 and use IDEX, EXSET and SZEMA to appropriately modify his
D Segment Extension and ID Segment Word 28. The calling sequence is as follows:

CALL IDEXC(MEXT)
MEXT(2)=10RCIAND(MEXT(2),176000B) , IANDCIEXT(2),1777B))
CALL EXSET(MEXT(2))

ISIZE=IANDCISIZE,1777B)

CALL SZEMACISIZE)

where IEXT is from above and MEXT is a new three element array and ISIZE is the new EMA size from above. and ISIZE is
the new EMA size. These calls need only be issued once in each program.

SEMA2 must also use the subroutine SETAB to modify the EMA Array tables to look like those passed from the father. The
calling seqguence is as follows:

ACY,1)=0 (reference EMA variable)
CALL SETAB(LEN,ITAB)

where LEN and ITAB are described above. SETAB finds the position of the EMA table for each array by using the same
algorithm as GETAB.

This routine must be done once for every array accessed by a given program or subroutine in the program.
SEMAZ2 is now accessing SEMA1’s EMA and can access the full array dimensions declared in SEMA1's COMMON
statement. In this example, SEMA2 changes all values in SEMA1's EMA. SEMA2 also calls a subroutine which accesses

EMA and sets the completion flag to be checked by SEMAT.

27

COMPUTATION

SPECIAL NOTES AND CONSIDERATIONS
e |istings are included for all software referenced in this article.

e SEMA1 and SEMAZ2 must be type 3 programs in order to access ID Segments directly. To make them type 4 programs,
IDEX, EMASZ, EXSET, and SZEMA would have to be modified to use cross map loads and stores where appropriate.

e SEMA1 must lock itself into memory to insure that the EMA does not disappear by SEMA1 being swapped. SEMA1 must
also cooperate with all other programs sharing its EMA so that it does not terminate before they are done accessing its
EMA.

e SEMA2 must lock itself into memory to prevent the dispatcher from overlapping SEMA1's EMA area.

e SEMAZ2will, in general, fitin a non-EMA partition. In order to have an EMA program run in @ non-EMA partition, you must use
the AS,nn command when you load the program.

e The subroutine SETAB must be called in SEMAZ2 and in every subroutine of SEMAZ2 for each EMA array accessed. (See the
example subroutine SHARE). This is because the compiler generates a separate set of EMA tables for each subroutine
compiled.

e Special note to assembly language programmers: The inplementation of EMA and its access is considerably different from
the FORTRAN level. (Refer to the RTE-IV Programmers Referenced Manual.) You will not need to use GETAB and SETAB in
an assembly language program since you can put in the correct tables for EMAP and .EMIO explicitly.

e 21MX-M users should be aware that they must force .EMAP to remap SEMA2's EMA once the EMA tables have been
changed. This is due to the fact that the software version of . EMAP will only remap when necessary. An error will occur is
the remapping is not forced. A good rule of thumb would be to reference the last element in SEMA1's EMA. (See example
comments in SEMA2 listing)

Following this example, the average FORTRAN programmer can indeed share Extended Memory Arrays with a minimum
amount of overhead.

Special thanks are due to Jim Grimm for the search algorithm used by GETAB and SETAB.

EDITOR’'S NOTE: Shared EMA is not an HP supported utility. HP cannot assume liabitity for the information in this article and
cannot assume liability for system integrity when these routines are used.

28

PAGE 0002 #01

0001 ASMB, L
0002 00000 NAM
0003 ENT

0004+THIS ROUTINE RETURNS THE

0005+ CALLING SEQUENCE IS

0006+ CALL IDEXCIEXT)

0007+ WHERE
0008 EXT
00028 01645 XIDEX EQU
0010 00000 000000 PTR BSS
0011 00001 000000 [IDEXT BSS
0012 00002 000000 IDEX NOP
0013 00003 016001X JSB
0014 00004 000001R DEF
0015 00005 061645 LDA
0016 00006 072000R STA
0017 00007 162000R LDA
0018 00010 172001R STA
0019 00011 036001R 12
0020 00012 036000R I1s2
0021 00013 162000R LDA
0022 00014 172001R STA
0023 00015 036001R Isz
0024 00016 036000R [s2
0025 00017 162000R LDA
0026 00020 172001R STA
0027 00021 126002R JMP
0028 END

 COMPUTA

2:32 PM TUE.,

IDEX
IDEX
CALLING PROGRAM’S ID EXTENSION

IEXT IS AN ARRAY DIMENSIONED 3
.ENTR

1645B

1

1

JENTR
IDEXT

X IDEX
PTR
PTR, I
IDEXT, I
IDEXT
PTR
PTR, I
IDEXT, I
IDEXT
PTR
PTR, I
IDEXT,I
IDEX, I

PICK UP PARAMETER

PICK UP ID EXTENSION

*+ N0 ERRORS «TOTAL #=*RTE ASMB 92067-16011x«

PAGE 0002 #01

0001 ASMB, L
0002 00000 NAM
0003 ENT
0004+

0005+ THE CALLING SEQUENCE IS
0006+ CALL EMASZ(IWORD)
0007 EXT
0008 00000 000000 1IAD BSS
0009 00001 000000 EMASZ NOP
0010 00002 016001X JSB
0011 00003 000000R DEF
0012 00004 061717 LDA
0013 00005 042011R ADA
0014 00006 160000 LDA
0015 00007 172000R STA
0016 00010 126001R JMP
0017 01717 XEQT EQU
0018 00000 A EQu
0019 00011 000034 D28 DEC
0020 END

2:32 PM TUE.,

EMASZ
EMASZ

THIS ROUTINE RETURNS WORD 28 QOF THE USER’S ID SEGMENT

.ENTR
1

.ENTR
IAD
XEQT
D28

Al
1AD, I
EMASZ, I
1717B

0

28

PICK UP PARAMETER

*+ NO ERRORS «TOTAL =+RTE ASMB 92067-16011x+

29

5 DEC.,

5 DEcC.,

1978

AND PASS BACK TO CALLING PROGRAM

1978

COMPUTATION

PAGE

0001
0002
0003
0004+«
0005+«
0006+
0007+«
0008+«
0009+«
0010«
0011+«
0012+
0013«
0014+«
0015+«
0016+
0017+
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034

0035
0036
0037
0038
0039
0040
0041

0002 »01

00000

ASMB, L

NAM
ENT

GETAB
GETAB

2:33 PM TUE., 5 DEC., 1978

THIS ROUTINE WILL RETREIVE THE EMA TABLE FOR A GIVEN ARRAY
THE CALLING SEQUENCE IS AS FOLLOWS:

FTN,L

$EMA(BLK,N)

00000
00001
00002
00003
00004
00005
00006
00007
00010
00011
00012
00013
00014
00015
00016
00017
00020
00021
00022
00023
00024
00001
00025
00026

PROGRAM .
COMMON /BLK/...ARRAY(J,K)

000000
000000
000000
016001X
000000R
066002R
046025R
160001
052026R
026014R
046024R
026007R
046023R
160001
066001R
105777
100000R
000000
126002R
000003
177777

177773
016002X

ARRAY(1,1)=0.
CALL GETAB(LEN,ITAB)

WHERE LEN=3+# OF DIMENSIONS#2
ITAB IS WHERE EMA TABLE IS RETURNED

LEN
ITAB
GETAB

SERCH

FOUND

D3
M1
B
MS
JSB

EXT
BSS
BSS
NOP
JSB
DEF
LDB
ADB
LDA
CPA
JMP
ADB
JMP
ADB
LDA
LDB
MVIW

JMP
DEC
DEC
EQU
DEC
JSB
END

.ENTR, .EMAP

1
1

.ENTR
LEN
GETAB
MS
B,I
JSB
FOUND
M1
SERCH
D3
B,I
ITAB
LEN,I

GETAB, I

RETREIVE PARAMETERS
PICK UP CALLING POINT

AND TRACE BACKWARDS
LOOKING FOR A JSB TO .EMAP

PICK UP ADDRESS OF EMA TABLE

AND PASS BACK TO CALLING PROGRAM

++ NO ERRORS +TOTAL =+«RTE ASMB 92067-16011x+

30

PAGE

0001
0002
0003
0004+«
0005+
0006+
0007«
0008+
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025

. COMPUTATION

0002 #01 2:33 PM TUE., 5 DEC., 1978

ASMB, L

00000 NAM EXSET

ENT EXSET
THIS ROUTINE WILL MODIFY THE CALLING PROGRAM’S ID EXTENSION
TO REFLECT A NEW PHYSICAL START DOF EMA
CALLING SEQUENCE IS AS FDLLOWS

CALL EXSETCIWORD)
WHERE IWORD IS THE NEW WORD 2 OF THE ID EXTENSION

EXT .ENTR,$LIBR,S$LIBX
01645 XIDEX EQU 1645B
00000 000000 PTR BSS 1
00001 000000 MEXT BSS 1
00002 000000 EXSET NOP

00003 016001X JSB .ENTR PICK UP PARAMETER
00004 000001R DEF MEXT
00005 061645 LDA XIDEX PICK UP ID EXTENSION
00006 072000R STA PTR
00007 036000R ISZ PTR
00010 016002X JSB $LIBR GO PRIVILEGED
00011 000000 NOP
00012 162001R LDA MEXT,I AND MODIFY ID EXTENSION WORD 2
00013 172000R STA PTR,I
00014 016003X JSB $LIBX
00015 000002R DEF EXSET
END

=+ NO ERRORS +TOTAL #+«RTE ASMB 92067-16011++

PAGE

0001
0002
0003
0004«
0005«
000G+
0007«
0008+
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
gozs8
** N

0002 #01 2:33 PM TUE., S DEC., 1978

ASMB, L

00000 NAM SZEMA

ENT SZEMA
THIS ROUTINE WILL MODIFY THE CALLING PROGRAM’S ID SEGMENT
WORD 28 TO REFLECT THE PASSED EMA SIZE
CALLING SEQUENCE IS

CALL SZEMACISIZE)
WHERE ISIZE IS THE NEW EMA SIZE

EXT .ENTR,$LIBR,$LIBX
00000 000000 IAD BSS 1
00001 000000 SZEMA NOP

00002 016001X JSB .ENTR PICK UP PARAMETERS

00003 000000R DEF IAD

00004 065717 LDB XEQT PICK UP WORD 28 OF ID SEGMENT
00005 046017R ADB D28

00006 160001 LDA B,I

00007 012016R AND MASK AND MODIFY EMA SIZE
00010 132000R IOR IAD,I

00011 016002X JSB $LIBR GO PRIVELEGED

00012 000000 NOP

00013 170001 STA B,I AND MODIFY IDSEG WORD 28
00014 016003X JSB $LIBX

00015 000001R DEF SZEMA

01717 XEQT EQU 1717B

00001 B EQU 1

00016 176000 MASK 0OCT 176000
00017 000034 D28 DEC 28
END
0O ERRORS +TOTAL #+RTE ASMB 92067-16011++

31

COMPUTATION

PAGE

0001
0002
0003
0004+~
000S+»
0006+
0007+«
0008+
0009«
0010+
0011+
0012+
0013+
0014«
0015+
0016+
0017+
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034

0035
0036
0037
0038
0039
0040
0041
X3 N

0002 #01 2:33 PM TUE., 5 DEC., 1978
ASMB, L
00000 NAM SETAB
ENT SETAB
THIS ROQUTINE WILL OVERWRITE THE EMA TABLE FOR A GIVEN ARRAY
THE CALLING SEQUENCE IS AS FOLLOWS:
FTN,L
$EMACBLK,N)
PROGRAM ...
COMMON /BLK/...ARRAY(J,K)
ARRAY(1,1)=0.
CALL SETABCLEN,ITAB)
. WHERE LEN=3+# OF DIMENSIONS»2
ITAB 1S THE NEW EMA TABLE
EXT .ENTR, .EMAP
00000 000000 LEN BSS 1
00001 000000 ITAB BSS 1
00002 000000 SETAB NOP
00003 016001X JSB .ENTR PICK UP PARAMETERS
00004 000000R DEF LEN
00005 066002R LDB SETAB PICK UP CALLING LOCATION
00006 046025R ADB MS
00007 160001 SERCH LDA B,I AND TRACE BACKWARDS
00010 052026R CPA JSB LOOKING FOR A JSB .EMAP
00011 026014R JMP FOUND
00012 046024R ADB M1
00013 026007R JMP SERCH
00014 046023R FOUND ADB D3 PICK UP TABLE ADDRESS
00015 164001 LDB B,I
00016 062001R LDA ITAB AND OVERWRITE EMA TABLE
00017 105777 MVW LEN,I
00020 100000R
00021 000000
00022 126002R JMP SETAB, I
00023 000003 D3 DEC 3
00024 177777 ™M DEC -1
00001 B EQU 1
00025 177773 M5 DEC -5
00026 016002X JSB JSB .EMAP
END
0 ERRORS »TOTAL »»RTE ASMB 92067-16011s+»

32

PAGE

0001

0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

0012
0013
0014
0015
0016
0017
0018
0019
0020
0021

o022
0023
0024
0025
0026
0027
0028
0029
0030
0031

0032
0033
0034
0035
0036
0037
0038
0039
0040

0001

FTN. 2:21 PM TUE., S DEC., 1978

FTN,L
$EMA(BLK, 0D

16
c

30

NO

PROGRAM SEMA1

COMMON /BLK/IRAY(30000),X(3000,5),AC200,2,2)
DIMENSION IMAP(32),I1EXT(3),NAM(3),ITABC10,4)
DATA NAM/2HSE ,2HMA,2H2 /

LU=LOGLUCID)

LOCK EMA ARRAYS INTO MEMORY
CALL EXEC(22,1)

PICK UP INFORMATION ON EMA SIZE AND STARTING PAGE #
CALL IDEXCIEXT)

CALL EMASZ(ISIZE)

ISIZE=IANDCISIZE,1777B)

WRITE(CLU,16)IEXT,ISIZE

FORMAT('" ID EXTENSION IS *3(2X,06) " EMA SIZE IS "I6)

PICK UP EMA TABLES
ITAB(10,1)=3+1%2
IRAY(1)=0
CALL GETABCITAB(10,1),ITAB(1,1))
ITAB(10,2)=3+24+2
X(1,1)=0.

CALL GETAB(ITAB(10,2),ITAB(1,2))
ITAB(10,3)=3+3+2

AC1,1,1)=0.

CALL GETAB(CITAB(10,3)>,ITAB(1,3))
LEN=30

PRESET IRAY
DO 17 J=1,30000
IRAY(J>=30000-J

SCHEDULE SON AND PASS EMA INFORMATION
CALL EXEC(24,NAM,IEXTC1),IEXT(2),IEXT(3),ISI1ZE,0,ITAB,LEN)

WAIT FOR SON TO SET FLAG
CALL EXECC12,0,2,0,-5)

IFCIRAY(25000) .NE.0XGOTO20
WRITE(CLU,30)CIRAY(J),J=1,10),CIRAY(J),J=24991,25000)
&,X€3000,5)>,AC200,2,2)

CHECK FOR TASK COMPLETION
IF(AC200,2,2).NE.-9999,)G0OT020
FORMAT(5110/5110/5110/5110/2F10.0)

END

WARNINGS *+ NO ERRORS =« PROGRAM = 00471 COMMON = 00000

33

COMPUTATION

PAGE 0001 FTN. 2:21 PM TUE., S DEC., 1978

0001 FTN,L

0002 S$EMACBLK,2)

0003 PROGRAM SEMA2

0004 DIMENSION IEXT(5),MEXT(3),ITAB(10,4)
0005 COMMON/BLK/IRAYC(1),X(1,1),AC1,1,1)
0006 EQUIVALENCECISTRT ,MEXT(2)),CISIZE,IEXT(4))
0007 C PICK UP EMA INFORMATION FROM FATHER
0008 CALL RMPARCIEXT)

0008 CALL EXEC(14,1,ITAB,40)

0010 CALL ABREG(IA,IB)

0011 LEN=IB

0012 C PICK UP CURRENT ID EXTENSION

0013 CALL IDEX(MEXT)

0014 LU=LOGLUCID)

0015 WRITECLU,1)CITAB(K) ,K=1,LEN)

0016 1 FORMAT(* TABLE IS"™ 10(8(2X,06)/))
0017 WRITECLU,3)MEXT

0018 3 FORMAT('" SEMA2 ID EXT '"3(2X,06))
0019 C MASK IN FATHER’S STARTING PAGE # OF EMA
0020 ISTRT=I0RCIANDCISTRT,176000B) , IANDCIEXT(2),1777B))
0021 C CALL EXSET TO MODIFY ID EXTENSION

0022 CALL EXSET(MEXT(2))

0023 C MODIFY EMA TABLES

0024 IRAY(1)=0

0025 CALL SETABCITAB(10,1),I1TABC1,1))
0026 X(1,1)=0.

0027 CALL SETAB(CITAB(10,2),ITAB(1,2))
0028 AC1,1,1)=0,

0029 CALL SETAB(CITAB(10,3),ITAB(1,3))
0030 C MODIFY EMA SIZE IN ID SEGMENT

0031 CALL SZEMACISIZE)

0032 WRITECLU,3)MEXT

0033 WRITECLU,S)

0034 5§ FORMATC'"™ WRITING TO EMA NOW'™)

0035 C PUT IN THIS TYPE OF CALL IF YOU HAVE AN MX-M
0036 C AC200,2,2)=0.

0037 C MAKE APPROPRIATE EMA CHANGES

0038 DO 10 J=1,30000

0039 10 IRAY(JI=0

0040 DO 11 J=1,3000

0041 DO 11 K=1,5

0042 11 X(J,K)=J+K

0043 DO 12 J=1,200

0044 DO 12 K=1,2

0045 DO 12 N=1,2

0046 12 ACJ,K,N)=J/K«N

0047 WRITEC(LU,15)

0048 15 FORMAT(' COMPLETED')
0049 C WAIT FOR FATHER TO VERIFY CHANGES

0050 CALL EXECC(12,0,3,0,-5)
0051 C CALL SUBROUTINE TO SET COMPLETION FLAG
0052 CALL SHARECITAB)
0053 END
++ NO WARNINGS #+ NO ERRORS #» PROGRAM = 00448 COMMON = 00000

34

 COMPUTATION

PAGE 0001 FTN. 2:22 PM TUE., S DEC., 1978

0001 FTN,L
0002 $EMA(BLK,2)
0003 SUBROUTINE SHARE(ITAB)
0004 COMMON/BLK/ IRAYC1),XC1,1),AC1,1,1)
0005 DIMENSION ITABC10,4) .
0006 AC1,1,1)=0.,
0007 CALL SETABCITAB(10,3),ITAB(1,3))
0008 AC1,1,1)=-9999.
0009 AC200,2,2)=-9999.
0010 END
#+ NO WARNINGS #+ NO ERRORS #+ PROGRAM = 00082 COMMON = 00000

35

COMPUTATION

SHARED EMA FOR RTE-IV

Larry W. SmithiHP Fullerton

That's right! Shared-EMA is not only possible but extremely practical. How many of you could make use of the capability of
sharing among several executing programs in real-time as much memory as you desire? Well, this can now be implemented by
having a user make some minor on-line adjustments. The purpose of this article is to give you a general description of this
capability and how you can implement shared-EMA on your RTE-IV system.

You might keep in mind that the solution presented in this article will wark for both firmware and software versions of EMA and
has been coined SHEMA/1000 by the originator and author of this article.

As itturns out, there are about two known methods of implemeting a shared-EMA capability without requiring a modification to
operating system code and/or supported utilities. The method chosen for this article is the same that exists in an actual
application.

SHEMA/1000 will soon be available through LOCUS (Library of Contributed User Software) for a nominal fee. Check future
COMMUNICATOR issues for its announcement and part number or contact your local sales office.

THE APPLICATION

In many real-time applications, disc and memory usage are at a premium. The history of the development of SHEMA/1000
began with just such an application. The user had an application which put stringent demands on disc, input/output and
common memory areas. The application involved controlling a radar control simulator and meant heavy interaction between
terminals and external control devices, as well as continuous updating of transaction history files that recorded every trainee’s
reaction to simulated radar conditions. One fact seemed inescapable — the ability to share at least 45K words of memary by
more than one program in real-time was a necessity. Conventional methods to solve this problem such as sharing disc and
system common were carefully evaluated and not considered feasible due to existing performance limitations. Thus, a
requirement for shared-EMA was born, carefully evaluated and considered to be the only time-wise solution.

THE PROBLEM

The ability to access a large data area in memory on a program basis was a significant enhancement to the RTE operating
system. This capability gave the user easy reference to data arrays up to 915K words. Making this large data area shareable
among programs by changing the firmware would be very difficult. A much better and overall effective solution would be to
modify the appropriate area of system tables such that the normal operating system could be used.

An easy to use and flexible on-line solution was found that had four prime advantages to the user:

Required no disc or memory system code changes.
Did not degrade system performance assuming proper precautionary steps are taken.
Used standard means of declaring EMA at the source program level.

> w o=

Any area of memory (declared or undeclared) could be shared.

[n addition, program execution times remained relatively the same and the extra setup code in the participating programs is
minimal.

36

COMPUTATION

In order to implement a shared-EMA scheme on-line, three major system problems had to be overcome:
PROBLEM 1: The scheduler and dispatcher had to be “fooled” initially as to a program’s actual EMA requirements.

PROBLEM 2: Each participating program accessing the shared area of memory had to be setup to point to the proper
physical page number of the shared-EMA area.

PROBLEM 3: The scheduler and dispatcher had to be “un-fooled” prior to execution of any normal EMA code.
These problem areas were all solved by manipulating information contained in a program’s main ID segment and ID extension
tables located in TABLE AREA 1l. Once this setup was done, all participating programs ran as usual in normal or mother
partitions.

THE IMPLEMENTATION PROCEDURE
To implement SHEMA/1000, the following software modules were developed:

SHEMA — main program which is a pre-execution processor responsible for solving problem #1 AND #2.

IDMAP — FORTRAN callable assembly language subroutine which manipulates information in a programs main 1D
segment to solve problem #3.

IDEXT — FORTRAN callable assembly language subroutine which returns the address the ID extension table to help
solve problem #1.

The functioning of SHEMA will be discussed later.
The overall flow of SHEMA/1000 is described in figure 1.

As an example, let's assume that the last 40K of memory is to be shared and declared as a mother partition. The partition layout
for this particular system is described in figure 2.

The first step is to load SHEMA into the system. SHEMA can later be scheduled into any desired partition except a partition
within the shared-EMA area. The next step (STEP 2) would be to load all participating programs with the subroutine “IDMAP” as
you normally would by specifying all EMA requirements. Two test EMA programs, EMA1 and EMA2, were used to test

SHEMA/1000. The first program init